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Abstract
This paper presents an algorithm for morphing between closed, planar piecewise-C1 curves. The morph is guar-
anteed to be a regular homotopy, meaning that pinching will not occur in the intermediate curves.
The algorithm is based on a novel convex characterization of the space of regular closed curves and a suitable
symmetric length-deviation energy. The intermediate curves constructed by the morphing algorithm are guaran-
teed to be regular due to the convexity and feasibility of the problem.
We show that our method compares favorably with standard curve morphing techniques, and that these methods
sometimes fail to produce a regular homotopy, and as a result produce an undesirable morph.
We explore several applications and extensions of our approach, including morphing networks of curves with sim-
ple connectivity, morphing of curves with different turning numbers with minimal pinching, convex combination
of several curves, and homotopic morphing of b-spline curves via their control polygon.

1. Introduction

Morphing is a classical problem in computer graphics. An
animator supplies a source shape and a target shape, and the
task is to automatically generate intermediate shapes, so as
to create a natural and satisfying morph. The shapes supplied
may be 3D or planar, and may or may not contain informa-
tion on the interior of the shape. In this paper we consider
the problem of morphing closed planar curves. The curves
are assumed to be piecewise C1, thus including C1 curves
and polygonal curves as special cases.

Morphing of curves is typically divided into two subprob-
lems. The vertex correspondence problem deals with finding
a correspondence between the given curves, while the vertex
path problem deals with the construction of the intermedi-
ate curves using the supplied correspondence. We consider
the second problem, and assume that the correspondence has
been generated by a suitable algorithm, or supplied by the
user.

A reasonable requirement of a morph is that all inter-
mediate curves will be regular. A regular curve is a curve
without extreme cusps. By this we mean a point on the
curve where the tangent rotates by 180◦, as shown in Fig-
ure 2 in (a)-middle for the polygonal case, (b)-middle for the
C1 case. Consequently, (a) and (b) show examples of non-
regular morphs. The well-known Whitney-Graustein The-
orem [Whi37] asserts that a morph which consists only of

Figure 1: Our morph (top) is guaranteed to be a regular
homotopy, while standard methods such as the angle-length
method may display cusps as shown in the bottom row.

regular curves, called a regular homotopy, is possible if, and
only if, the source and target curves have the same turning
number (to be defined). Thus the non-regularity of the morph
displayed in Figure 2 is unavoidable since the source and tar-
get curves have different turning numbers.

The goal of this paper is to devise an algorithm producing
a visually pleasing regular homotopy ct between two closed
regular input curves c0,c1 with the same turning number.
The importance of this goal is illustrated in the comparison
with the angle-length method presented in Figure 1. We es-
tablish this goal by formulating a (non-linear) projection op-
erator P onto the space of closed regular curves. The pro-
jection operator is defined via a convex representation of the
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(a) (b)

Figure 2: morphs between polygonal curves (a), and C1

curves (b), with a non-regular intermediate curve.

space of regular closed curves with fixed external angles, to-
gether with a convex energy, defined over this space, mea-
suring relative length deviation.

The projection operator is used to build the regular homo-
topy ct as follows. First, we build intermediate ‘ideal’ curves
c̄t defined so that the change in angles and length along the
curve is monotone. These curves are of desired shape but are
not closed in general. Second, we use the projection opera-
tor to ‘close them’ via solving a convex optimization prob-
lem, ct = P(c̄t). The convexity of the projection operator,
together with a feasibility result of the space of closed regu-
lar curves provides the proof of correctness of the algorithm.

The process of constructing ideal curves and then ‘clos-
ing’ them appear in several algorithms, e.g., the morphing
algorithms in [SGWM93,SE02, SSHS14] and the fairing al-
gorithm in [CPS13], however it is usually done by distribut-
ing the closing gap along all vertices without guaranteeing
the regularity of the resulting closed curve. It is our belief
that these algorithms can benefit from replacing the standard
method of closing curves, with the method proposed here
which guarantees regularity.

An important property of our algorithm is that when the
source and target curves are convex, all intermediate curves
will remain convex. The morph is also locally simple in a
sense we define in section 6, and it behaves well with respect
to applying scaling, rigid motions, re-parameterizations and
time reversal to the source and target curves.

We present several applications of our method; We ex-
tend our method to morph simple networks of curves; This
allows the user to insert corresponding diagonals in source
and target curves, thus better controlling the volume change
during the morph. We show our algorithm can be modified to
naturally morph between curves with different turning num-
bers with minimal pinching. We show that our method can
be easily generalized to deal with convex combinations of
more than two shapes. Finally, we give a sufficient condition
for regular homotopic morphing of b-spline curves via mor-
phing their control polygon using our algorithm. If the con-
dition does not apply, it is possible to preform subdivisions
of the source and target control polygons until the condition
is fulfilled.

2. Previous Work

Polygonal curves. The most direct approach to morphing
between polygonal curves is to linearly interpolate the ver-

tices of the polygons. Early work in the field [SG92] showed
that for certain correspondences between shapes this can
cause severe problems, but suggested to choose a correspon-
dence so that the linear morph will perform as little work as
possible, in the sense of elasticity theory.

An improved strategy proposed by Sederberg and
colleagues was the well known angle-length method
[SGWM93], in which linear interpolation is conducted on
the external angles and lengths of the polygonal curves, in-
stead of on the vertices. As this does not result in a closed
curve, the interpolated lengths are replaced with the closest
lengths which do close the curve. Our general approach here
is similar, but we preform the closing of the curve in such a
way that regular homotopy is guaranteed, while Sederberg’s
algorithm sometimes fails to achieve this property.

Smooth curves. Piecewise C1 curves are usually repre-
sented in some spline base, such as Bezier, b-splines or
NURBS. If the correspondence problem is solved, so that the
source and target curve are defined according to the same ba-
sis, and a correspondence is given between their respective
control polygon, then morphing of the freeform curves can
be conducted via morphing between the control polygons,
using any one of the methods mentioned above. This strat-
egy can be found in [SG95]. Since the control polygon is an
‘exaggerated approximation’ of the curve, this method may
be less accurate than methods which exploit the properties
of the curve itself.

Several methods (e.g., [MP06, KSMJ04] ) endow the
space of curves with a riemannian structure, so that a morph
between two curves can be found by computing the geodesic
between them.

[SE02] morph between curves by morphing their curva-
ture functions. The intermediate curves are closed heuris-
tically by evenly distributing the ‘error’ between the ver-
tices. [SSHS14] also linearly interpolate the curvature, and
close the curve by choosing the closest curvature function
which defines a closed curve. The discretization of this op-
timization problem results in a non-convex problem. Our
method differs from the methods above in the closing tech-
nique which guarantees regular homotopy. Additionally, it
isn’t restricted to source and target curves which are param-
eterized by arc-length as these methods are.

Planar shapes. Morphing is often applied to compatible
tessellated domains. In [SR95] the domains are compati-
bly partitioned into ‘star-shaped polygons’, which can be
interpolated without self-intersections. [ACOL00] use con-
sistent triangulations of shapes [ASS93] and suggest a per-
triangle As-Rigid-As-Possible solution that is then stitched
together to produce the final morph. More recent papers use
different elasticity-inspired energies for defining the morph
[HLZ04, BBA08]. Some methods define morphs based on
metric interpolation [KMP07,WDAH10]. [CWKBC13] sug-
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gested bounded distortion morphing of domains based on
conformal realization of intermediate domains.

Although these methods perform well in practice and pos-
sess certain guarantees, they still require a compatible tessel-
lation of the domains and there is no proof that a compatible
solution can be found once edge lengths (or any other defin-
ing quantity) is set, since the compatibility equations for tri-
angulations are non-convex in general. As shown in this pa-
per, for curves the situation is simpler and convex character-
ization exists.

Intersection free morphing. Several morphing algorithms
assume that source and target curves are simple (non-
intersecting), and construct morphs which are guaranteed
to preserve simplicity. For example, [GS01] achieve this by
equivalently triangulating the source and target shapes, and
extending the triangulation to a common convex domain.
[IOD09] preform intersection free morphing by combining
a non-convex energy which prohibits intersection with a
‘user supplied’ energy which determines the properties of
the morph. In contrast to intersection free morphing, a regu-
lar homotopy prohibits local intersections, but allows global
intersections which may occur naturally in planar images
(e.g., Figures 7, 13).

Regular homotopic fairing. [CPS13] propose an algorithm
for regular homotopic fairing. In contrast to our method, the
approach they suggest assumes fixed lengths, and closes in-
termediate curves by allowing modification of the angles.

Regular homotopy. The Whitney-Graustein Theo-
rem [Whi37] says that there is a regular homotopy between
two C1 regular closed curves if and only if they have the
same turning number. This Theorem was generalized to a
much larger class of curves, including those we discuss here,
by [MH47]. [MY91] construct a regular homotopy between
polygonal curves in which each intermediate curve is a
polygon. Their proof is rather complex and our presentation
here provides an alternative proof which is arguably simpler.
A proof along these lines also appears in [Pin10].

3. Preliminaries and problem statement

Closed regular curves. We will discuss curves c : [0,1]→
R2 fulfilling the following conditions:

1. Closed. We consider closed curves, that is c(0) = c(1).
2. Continuous, Piecewise C1. c is continuous, and its deriva-

tive ċ≡ dc
ds exists and is continuous in all but a finite set of

singular points s1, . . . ,sn ∈ [0,1). At these points the right
ċ+ and left ċ− limits of ċ exist. We define ċ+(1) = ċ+(0),
and ċ−(0) = ċ−(1).

3. Regular. The curve’s derivative ċ is non-zero except pos-
sibly at the singular points. At the singular points s j, the
left and right limits T− and T+ of the tangent field T = ċ

|ċ|
exist, and satisfy T−(s j) 6=−T+(s j).

We note that when there are no singular points our def-
inition coincides with the standard definition of regular C1

curves, and that when c is piecewise linear our definition
coincides with the standard definition of regular polygonal
curves.

Figure 2 shows non-regular closed curves in (a)-middle
and (b)-middle.

Turning number and regular homotopy. The exter-
nal angle θ j at a singular point s j is the unique an-
gle in (−π,π) satisfying eiθ j T−(s j) = T+(s j), as shown
in the inset. Since c is regular θ j is well-defined.
It is convenient to represent the
curve’s speed in polar form with
complex numbers ċ(s) = r(s)eiϕ(s),
where r,ϕ : [0,1]→ R, are piecewise
C1 functions (not continuous in gen-
eral), and r > 0. ϕ is uniquely defined
up to addition of a constant function whose value is an inte-
ger multiply of 2π by the requirement that at singularities ϕ

will satisfy

ϕ+(s j) = ϕ−(s j)+θ j (3.1)

If c is a closed curve, then ċ+(0) = ċ+(1) and therefore there
is an integer τ(c) called the turning number of c, such that

2πτ(c) = ϕ+(1)−ϕ+(0) (3.2)

Below we show several examples of closed regular curves
and their turning number.

We note that it is known that simple closed curves c with
positive orientation have τ(c) = 1. As a result the turning
number of many examples of interest is one.

Given two closed regular curves c0(s),c1(s) : [0,1]→R2,
a morph (or homotopy) ct(s) = c(t,s) : [0,1]× [0,1]→ R2

is a continuous function in t,s such that for t = 0, t = 1 it
coincides with c0, c1, respectively. A morph where for all
t, ct is a closed regular curve is called a regular homotopy.
The Whitney-Graustein Theorem [Whi37] asserts that there
exists a regular homotopy between a pair of closed regular
curves c0,c1 if and only if they have the same turning num-
ber, τ(c0) = τ(c1). For example, there exists a regular homo-
topy between the second and third curves in the figure above,
and there is no regular homotopy between all other pairs of
curves in that figure.

Problem statement. The goal of this paper is to devise
an algorithm that, given two closed regular curves c0,c1 :
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[0,1]→R2 with the same turning number, constructs a visu-
ally pleasing regular homotopy ct : [0,1]→R2 of the curves.

4. Method

This section develops the algorithm to solve the regular ho-
motopy problem. The key idea is to construct an “ideal
curve” c̄t for time t and to project it onto the space of closed
regular curves, ct = P(c̄t), using a convex characterization
of that space.

Ideal Intermediate Curves. A natural approach to con-
struct a regular homotopy between c0,c1 would be to lin-
early interpolate angles and lengths of the two curves. This
can be done using the polar representation of the curves’
derivatives ϕ

0,r0 and ϕ
1,r1,

ϕ̄
t = (1− t)ϕ0 + tϕ1 r̄t = (1− t)r0 + tr1

If the length of c0,c1 is not restricted to unity, the r̄t(s) will
be biased towards the curve whose total length is larger. We
therefore normalize all curve lengths to be one, so that rt is
in fact the speed of the curve ct relative to its total length.

The ideal curve at a fixed time t can be reconstructed by
integrating the derivative of the curve, that is let ˙̄ct(s) =
r̄t(s)eiϕ̄t (s), and

c̄t(s) = c̄t(0)+
∫ s

0
˙̄ct (4.1)

where c̄t(0) ∈ R2 is a translational degree of freedom. The
curve c̄t defined in eq. (4.1) is regular by construction but is
not, in general, closed. We will consider

(
r̄t , ϕ̄t) the ‘ideal’

solution, and choose a solution as close as possible to it, in a
sense to be defined, from the space of closed regular curves.

The motivation for our definition of ideal curves, is that
the change in length and angle along sub-arcs, defined for
fixed s1,s2 ∈ [0,1] by

L(c̄t ,s1,s2) =
∫ s2

s1

| ˙̄ct(s)|ds =
∫ s2

s1

r̄t(s)ds

angle(c̄t ,s1,s2) =
∫ s2

s1

˙̄ϕt = ϕ̄
t(s2)− ϕ̄

t(s1)

change linearly in t. This generalizes the ideal curves chosen
by the angle-length method [SGWM93] for polygons.

Closed regular curves. Curves ct constructed from piece-
wise C1 functions (rt ,ϕt) are regular, if for all t,

ct(1)− ct(0) =
∫ 1

0
ċt =

∫ 1

0
rt(s)eiϕt (s)ds = 0 (4.2a)

rt > 0 (4.2b)

|ϕt
+(s j)−ϕ

t
−(s j)|< π , ∀ j (4.2c)

In general, these conditions are non-convex in (ϕt ,rt) and

hence difficult to work with. Inspired by [SGWM93] we pro-
pose to fix ϕ

t = ϕ̄
t and leave only rt free. Since ϕ̄

t is a con-
vex combination of ϕ

0 and ϕ
1, ϕ

t satisfies (4.2c). This ren-
ders eqs. (4.2) convex (in rt ) but raises the question if this is
not too strong of a constraint, that is, is (4.2) still feasible?
Namely, is it always possible to find a positive length func-
tion rt > 0 such that (rt ,ϕt) define a closed regular curve?
The answer is affirmative as formulated in the next Theorem.

Theorem 4.1. If τ(c0) = τ(c1) 6= 0, then for all t ∈ [0,1]
there exists piecewise C1 function rt satisfying (4.2a),(4.2b).

We discuss the case of zero turning number when we
prove the Theorem in Appendix A. Let us denote

Γ
t =
{

rt | rt satisfies (4.2a), (4.2b)
}

the non-empty set of feasible solutions rt of (4.2), given ϕ
t =

ϕ̄
t .

Energy. We now want to search for the member of the con-
vex non-empty set Γ

t that is closest to r̄t with respect to some
energy E(rt , r̄t). The energy we propose is

E(rt , r̄t) =
∫ 1

0

(
rt(s)− r̄t(s)√

r̄t(s)rt(s)

)2

d`(s)

This is the relative length distortion with respect to the
ideal curve, integrated according to the length element
d`(s) = 1

2
(
rt(s)+ r̄t(s)

)
ds, which is the average of the

length element of the ideal curve and the length element of
the closed curve to be constructed.

Another interpretation of the energy can be obtained, us-
ing the fact that the curvature κ of a regular curve c is a sim-
ple function of the polar coordinates of its speed, i.e., κ = ϕ̇

r .
Thus, denoting the curvature of the curves defined by (ϕ̄t , r̄t)
and (ϕ̄t ,rt) by κ̄

t and κ
t respectively, we have

E(rt , r̄t) =
∫ 1

0

(
κ

t(s)− κ̄
t(s)√

κ̄t(s)κt(s)

)2

d`(s)

We note that E(rt , r̄t) is of the form

E(rt , r̄t) =
∫ 1

0
f
(
rt(s)

)
ds

where f can be rewritten as

f (r) =
1
2

(
1
r̄t r2− r− r̄t +

(
r̄t)2 1

r

)
Thus f (r) is infinite when r = 0, and d2 f

dr2 > 0 for r > 0.
Therefore the energy E(rt , r̄t) is strictly convex over Γ

t and
explodes as rt approaches zero. Intuitively, the relative dis-
tance functional E turns out to be convex when restricted to
the space of closed regular curves Γ

t and naturally discour-
age the speed rt of the curves ct from approaching zero.
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Convex projection operator. Finally, we state the full for-
mulation of our optimization problem

min
rt

E(rt , r̄t) (4.3a)

s.t.

rt > 0 (4.3b)∫ 1

0
rt(s)eiϕt (s)ds = 0 (4.3c)∫ 1

0
rt(s)ds = 1 (4.3d)

where (4.3d) restricts the curve to unit length to maintain
consistency with our interpretation of rt as the speed of the
curve relative to its total length. The unique solution rt of
(4.3) is now used to define ċt = rteiϕ̄t

which is then inte-
grated (see Eq. (4.1)) to obtain ct = P(c̄t).

In practice we approximate the solution of (4.3) by choos-
ing a dense partition 0 = s0 < s1 < .. . < sn = 1 (which in-
cludes the original singular points of the curves) and then
approximating cm, m = 0,1, by the piecewise linear curve
cm

n whose singular points are si, and whose value at si is
cm(si). For sufficiently dense partitions, cm

n will be regular
curves with the same turning number as cm (see supplemen-
tary material).

After approximating the source and target curves, we
search for solutions ct which are also piecewise linear with
the same singular points. This reduces to the finite dimen-
sional optimization problem of morphing polygons which
we will now describe.

5. The polygonal case

In this section we focus on the polygonal curve case. We
show that in this case the optimization problem (4.3) boils
down to a Second-Order Cone Program (SOCP), and we pro-
vide all details of the morphing algorithm. We consider the
source and target closed regular polygons

pm =
[
pm

1 ,p
m
2 , . . . ,p

m
n = pm

1
]
, m = 0,1

where pm
j ∈ R2. Our goal is to produce a visually pleas-

ing regular homotopy of closed polygonal curves pt =[
pt

1, . . . ,p
t
n = pt

1
]
.

The source and target polygons pm, m = 0,1, can be in-
terpreted as piecewise-linear regular closed curves by choos-
ing any n singular points in the unit interval 0 = s1 < s2 <
.. . < sn = 1 (the interpolation constructed will be indepen-
dent of this choice) and defining cm, m = 0,1 to be the
unique piecewise-linear curves such that cm(s j) = pm

j , for
all j = 1, ..,n. We can then construct intermediate curves ct

using (4.3). We note that r̄t and ϕ
t = ϕ̄

t are constant on the
intervals ∆ j = [s j,s j+1], and strict convexity implies that the
minimizer rt of (4.3) is constant on these intervals as well,
so that ct is in fact piecewise linear and defines a polygon pt

via pt
j = ct(s j).

We define Lt
j, L̄

t
j,ϕ

t
j ∈ R by the equations

rt ∣∣
∆ j

=
Lt

j

|∆ j|
; r̄t ∣∣

∆ j
=

L̄t
j

|∆ j|
; ϕ

t ∣∣
∆ j

= ϕ
t
j

Plugging rt , r̄t ,ϕt into (4.3) gives a finite dimensional opti-
mization problem:

min
Lt ∑

j

Lt
j− L̄t

j√
L̄t

jL
t
j

2
L̄t

j +Lt
j

2
(5.1a)

s.t.

Lt
j ≥ 0 (5.1b)

∑
j

Lt
je

iϕ̄t
j = 0 (5.1c)

∑
j

Lt
j = 1 (5.1d)

The feasibility of this optimization problem is a discrete
version of Theorem 4.1 stated here and proved at the end of
this section,

Theorem 5.1. If τ(p0) = τ(p1) 6= 0, then for all t ∈ [0,1]
the polygonal regular homotopy optimization problem (5.1)
is always strictly feasible. That is, has a strictly positive so-
lution Lt

j > 0.

The unique minimum Lt = (Lt
j)

n−1
j=1 of the strictly convex

functional satisfying the constraints is strictly positive since
(5.1a) is +∞ if some Lt

j = 0. Furthermore, as we prove in
Appendix A,

Lemma 5.2. Lt
j is a C∞ function of t.

We conclude that the morph ct defined up to translation
by (Lt

j, ϕ̄
t
j) is a regular homotopy. In fact, the vertex paths

ct(s j) are smooth in t.

Recast as SOCP. We now show how (5.1) can be rephrased
as a second order cone program (SOCP) for which several
standard solvers are available. We regroup (5.1a) to obtain

1
2 ∑

j

1
L̄t

j
(Lt

j)
2−Lt

j− L̄t
j +(L̄t

j)
2 1

Lt
j

We replace the expressions 1/Lt
j with the slack variables η

t
j

and add the constraint 1/Lt
j ≤ η

t
j to obtain an equivalent for-

mulation for (5.1):

min
Lt ,ηt

1
2 ∑

j

1
L̄t

j
(Lt

j)
2−Lt

j− L̄t
j +(L̄t

j)
2
η

t
j (5.2a)

s.t.

η
t
jL

t
j ≥ 1 (5.2b)

Lt
j satisfy the constraints (5.1b)− (5.1d) (5.2c)

This formulation is equivalent since if (Lt ,ηt) is the mini-
mizer of (5.2), then (5.2b) will necessarily be active. (5.2b)
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is a rotated cone condition, which can be formulated as the
second order cone condition

η
t
j +Lt

j ≥
∥∥(2,Lt

j−η
t
j
)∥∥

2

Curve reconstruction. Once the solution Lt to (5.1) is
found, the polygonal curve pt can be reconstructed by in-
tegrating the derivative ċt as defined in Eq. (4.1). This can
be done by solving the linear system of equations

pt
j+1−pt

j = Lt
je

iϕ̄t
j (5.3)

that is uniquely solvable up-to a translational degree of free-
dom. We fix this degree of freedom by requiring that the
center of mass of each intermediate curve

Ct =
n

∑
j=1

Lt
j +Lt

j−1

2
pt

j (5.4)

(where we define Lt
n = Lt

1) will be the linear interpolation of
C0 and C1.

Scaling. Since we rescale the source and target curves to
have unit length (see section 4), the morph ct needs to be
scaled back to the original dimension of the problem. We
choose a continuous scaling S : [0,1]→ R+ for ct so that
S(m)cm, m = 0,1 is the original curve c̃m supplied by the
user before scaling. We use the linear interpolation of the
diameter of the shape, that is

S(m) = diam(c̃m) , S(t) = (1− t)S(0)+ tS(1) (5.5)

Choosing ϕ
m
1 . For regular curves, the choice of ϕ

m
1 , m =

0,1 defines ϕ
t
1, and thus all of ϕ

t
j, uniquely. To choose this

initial condition we begin with ϕ̃
0
1, ϕ̃

1
1 ∈ (−π,π), and then

search for the k ∈ Z minimizing the work in angle space,
measured with respect to the average discrete length element
L̄

1
2 = 1

2 (L
0 +L1):

k∗ = min
k∈Z

n−1

∑
j=1

[
(ϕ̃1

j +2πk)− ϕ̃
0
j

]2
L̄

1
2
j (5.6)

We then choose

ϕ
0
1 = ϕ̃

0
1, ϕ

1
1 = ϕ̃

1
1 +2πk∗ (5.7)

We summarize the polygonal morphing algorithm in Al-
gorithm 1.

Feasibility of the optimization problem. We show that the
optimization problem (5.1) is strictly feasible as Theorem
5.1 above states. The proof also contains the main idea for
the proof of the continuous case which is presented in full
detail in Appendix A.

The main tool for the feasibility proof is the following
Lemma,

Algorithm 1: Polygonal regular homotopic morphing
Input:
source and target polygons p0,p1.
times t for which to evaluate pt .
Output:
a regular homotopy pt .

scale p0,p1 to unit length.
compute ϕ

m
j using Eqs.(3.1),(5.6),(5.7).

for each time-step t do:
compute ideal curve L̄t

j, ϕ̄
t
j.

solve SOCP (5.2) to obtain Lt
j.

construct pt using Eqs. (5.3),(5.4),(5.5).

Lemma 5.3. Let ϕ1, . . . ,ϕn−1 ∈ R be a sequence of real
numbers with maximal and minimal elements ϕmax,ϕmin,
satisfying

|ϕ j+1−ϕ j|< π , ϕmax−ϕmin > π (5.8)

Then

1. the conical hull Coni{eiϕ j : j = 1, ..,n− 1} spans all of
the plane.
(For a set A⊆ Rn, Coni(A) = {∑ηiai | ai ∈ A,ηi ≥ 0}.)

2. There is a strictly positive solution L j > 0 to the equation
∑L jeiϕ j = 0.

The first part of the Lemma is proved in Appendix A,
however the idea of the proof is that the conditions on the
numbers

{
ϕ j
}

imply that the points on the unit circle
{

eiϕ j
}

do not leave an empty half-circle and therefore their conic-
hull covers the plane. See figure 3 for an illustration of this
idea.

The second part is an immediate conclusion from the first
part. Using the first part, we can choose L̃ j ≥ 0 such that
∑ L̃ jeiϕ j =−∑eiϕ j . Rearranging this expression we see that
L j = L̃ j +1 is a positive solution of ∑L jeiϕ j = 0.

Figure 3: Proof of feasibility. The conical hull of the unit
vectors marked by colored disks is the region colored in
blue. In each figure a new vector eiϕ j is added (ϕ =
( π

4 ,0,
3
4 π, 5

4 π)). The conical hull in the last figure is R2 since
ϕ4−ϕ2 > π.

To conclude the feasibility proof, it is sufficient to show
that ϕ

t
j, j = 1, . . . ,n−1 satisfy the conditions of the Lemma.

If so, by the second part of the Lemma there are positive
lengths Lt

j which satisfy the curve closing equation (5.1c),
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and this solution can be normalized so that it also satisfies
the unit length condition (5.1d).

To see that ϕ
t
j satisfy the conditions of the Lemma, con-

sider the angle function ϕ
m of the piecewise-linear curve cm

defined by pm, m = 0,1. Denote τ ≡ τ(c0) = τ(c1). Using
(3.1) and the definition of the turning number in (3.2), we
obtain

2πτ = ϕ
m
+(1)−ϕ

m
+(0)

=
(
ϕ

m
+(1)−ϕ

m
−(1)

)
+
(
ϕ

m
−(1)−ϕ

m
+(0)

)
= θn +ϕ

m
n−1−ϕ

m
1

Since |θn| < π, it follows that for m = 0,1, ϕ
m
n−1 − ϕ

m
1 is

in the convex set (2πτ−π,2πτ+π), and therefore so are
ϕ

t
n−1−ϕ

t
1, t ∈ [0,1]. In particular

∣∣ϕt
n−1−ϕ

t
1
∣∣ > π and so

ϕ
t
j, j = 1, . . . ,n−1 satisfy the conditions of the Lemma.

6. Properties

We now present several properties of the regular homotopy
ct = P(c̄t).

Smooth vertex path. As discussed earlier, the trajectory of
the vertices pt

j is a C∞ function of t (Lemma 5.2).

Scaling and rigid motion invariance. If source and target
curves cm,m = 0,1 undergo a scaling and/or rigid motion
then ct will undergo a transformation of the same nature.
This property is due to the fact that the optimization prob-
lems (4.3),(5.1) are formulated only in terms of angles and
lengths and the particular scaling procedure employed.

Invariance to change of parameter. If cm
∗ are obtained

from cm by an identical change of parameter, i.e.,

cm
∗ = cm ◦ p, m = 0,1

where p : [0,1]→ [0,1] is strictly monotonically increasing
and piecewise C1, then the morph satisfies ct

∗ = ct ◦ p. This
is a natural property since joint reparameterization doesn’t
change the correspondence between points on the curves,
and so the intermediate curves should also remain the same,
up to the reparameterization. This property can be explained
by noting that the change of variables s = p(σ) in the inte-
grals in (4.3) leads to an equivalent problem and therefore
rt(s) is the solution of (4.3) iff rt

∗(σ) = r(p(σ))p′(σ) is the
solution of (4.3) with cm

∗ used as input curves.

In the polygonal case this implies that subdividing an edge
by inserting a new vertex does not change the polygons cre-
ated throughout the morph. This property is sometimes re-
ferred to as identity preservation.

Time reversal. If c0 and c1 switch roles, that is c0
∗ = c1 and

c1
∗ = c0, then ct

∗ = c1−t .

Convexity preservation. If c0,c1 are simple convex curves
(simple closed regular curves bounding convex regions), the
intermediate curves ct are guaranteed to be convex as well.
This follows from
Lemma 6.1. A closed regular curve c with τ(c) = 1 is con-
vex, iff ϕ is a non decreasing function.

Therefore, if c0,c1 are convex, ϕ
0,ϕ1 will be non-

decreasing, and as a result ϕ
t = ϕ̄

t will also be non-
decreasing, and so ct will be convex. The proof of the
Lemma appears in the supplementary material.

Locally non-intersecting. If c0,c1 are simple and non-
convex it does not imply in general that ct is simple as-well.
However, we can guarantee that monotone sub-arcs of the
curve stay simple. We say that a curve c is monotone along
[s1,s2], if for all non-singular s,s′ ∈ [s1,s2],

ϕ(s)−ϕ(s′)≤ π (6.1)

This is equivalent to saying that eiϕ are all in
the half circle defined by some eiα, which im-
plies that s 7→ 〈eiα,c(s)〉 is non-decreasing along
[s1,s2], or in other words, that c is monotone along
[s1,s2] in the direction eiα and cannot self-intersect.
The cyan curve displayed at the right is mono-
tone in the direction e0, and the red curve is
a monotone in the direction ei π

2 . If c0,c1 are
both monotone along [s1,s2], then since (6.1)
is a convex condition, so are the intermediate curves ct . This
implies that ct |[s1,s2] is simple for all t ∈ [0,1]. Thus our mor-
phing method is locally non-intersecting in the sense that
intersections cannot occur in sub-intervals in which the tan-
gent fields of the source and target curves does not change
substantially.

7. Results

In this section we provide evaluation of our curve morphing
algorithm, and compare it to relevant previous methods.

Curves from standard datasets. We verified that our
method produces high quality morphs by running our algo-
rithm on examples from standard datasets (Figures 4 and 5).
We found the correspondence between the shapes by initially
using the algorithm of [LJ07], and then slightly modifying
the correspondence of a small number of points manually
to increase the accuracy of the correspondence, when neces-
sary. To illustrate the correspondence, the curves are colored
so that corresponding regions in different curves are colored
identically. Source and target are left and right curves, re-
spectively.

Comparison with curve-based methods. We compared
our method with the angle-length method [SGWM93] and
with the curvature morph method [SSHS14].

A disadvantage of the curvature method is the require-
ment that source and target curves are parameterized by arc-
length, which is not necessarily the natural correspondence
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Figure 4: Morphs of leaves from [TvW02]

Figure 5: Morphs of tools from [BBBK08]. The correspon-
dence for the pocket knife is given so that the different blades
deform from one to the other.

to choose, as can be seen in Figure 6: The source curve is a
cubic b-spline generated by a square with three added ver-
tices evenly distributed along each edge, and the target is
obtained from the source by scaling the x-axis of the con-
trol polygon. This defines a natural correspondence between
the control polygons and hence between the splines. How-
ever, the curvature algorithm (in (b)) reparameterizes both
curves in arc-length parameterization, and as a result returns
intermediate curves with more than four ‘vertices’ . The cur-
vature method also fails to preserve the shape of the kite in
Figure 7.

(a) (b) (c)

Figure 6: Comparison of (a) angle-length (b) curvature and
(c) our algorithm. The requirement that source and target
curves are parameterized by arc-length creates new vertices
in the intermediate curves, as opposed to the natural morph
generated by angle-length interpolation methods.

Figures 7 also shows that the angle-length method can
produce curves with cusps which our algorithm is guaran-
teed to avoid. In Figure 8 we morph two convex quads and
compare with the angle-length method for polygons. The
angle-length method changes the turning number through-
out the morph, resulting in an irregular morph, while our

(a) (b) (c)

Figure 7: Comparison of (a) angle-length (b) curvature
and (c) our algorithm. Note the cusp produced by the angle-
length method.

morph is guaranteed to return a convex curve throughout the
morph. The reason for the irregular behavior of the angle-
length method in these examples seems to be the weighting
chosen in [SGWM93], which in this case effectively forces
one of the quad edges to remain constant throughout the
morph. We have found that also if the weighting is changed
to various other natural options, there are example in which
the turning number isn’t preserved. In Figure 9 we show such
an example for a choice of uniform weights.

Figure 8: Comparison of angle-length (top) with our
method. The turning number of the angle-length method
changes during the morph, causing the intersection in the
second figure from the left, while our method is guaranteed
to preserve convexity.

Figure 9: The angle-length method (top) exhibits cusps
while our algorithm produces a regular homotopy.

Comparison with tessellation-based methods. In Fig-
ure 10 we compare our method with the bounded-distortion
triangular mesh morphing method of [CWKBC13]. Both
methods return agreeable and very similar results. It seems
that morphing of domains can be carried out, in many cases,
without necessarily utilizing any information on the interior
of the shapes. We believe, based on our experiments, that
this is the case in most morphing problems. In section 8 we
propose a generalization of our method which can handle the
infrequent cases where some interior information is needed.

Timing. We implemented our algorithm on Matlab, using
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Figure 10: Comparison of morphing using triangular
meshes (top row in both examples), with our method. Both
methods give similar natural results, suggesting that the
morphing problem can be solved without information on the
interior of the shape.

Yalmip [Lof04] for the formulation of the SOCP optimiza-
tion problem and Mosek [AA00] to solve the SOCP opti-
mization. Running our algorithm on a C1 curve sampled at
2000 points takes 1.7 seconds per intermediate frame, where
the solution of the optimization problem on Mosek takes
0.86 seconds, and most of the remaining time is spent on
the formulation of the problem by Yalmip. The timing was
measured with an Intel i7 processor, clocked at 3.3 Ghz.

8. Applications

In this section we provide several applications and exten-
sions of the method. These include morphing networks of
curves with simple connectivity, morphing of curves with
different turning numbers, convex combination of multiple
curves, and regular homotopic morphing of B-spline curves
using their control polygon.

Figure 11: The addition of three diagonals (top) prevents
the shrinking of the body of the snake which appears in our
regular algorithm (bottom).

Network of Curves. We consider a generalization of the
curve morphing problem to a certain class of polygonal

curve networks. The motivation is to allow the user to spec-
ify diagonals in c0,c1 between two pairs of corresponding
vertices to better control volume changes. Figure 11 com-
pares our homotopic morphing method with our method of
morphing networks of curves. The snake example shows
how addition of diagonals can prevent the shrinking of the
snake’s body which appears in our homotopic morphing al-
gorithm, which has direct control only on the distances be-
tween adjacent vertices. We note that in all other cases we
encountered, shrinking did not occur and so it seems that in
general our method does handles volume changes well, as
illustrated in the examples in section 7.

To create a morph that is aware of the diagonals we model
the problem using a network of polygonal curves: We as-
sume the user added corresponding diagonals to the source
and target, resulting in a collection of closed simple curves
ck,m, k = 1,2, . . . ,K, m = 0,1, where every pair of curves
ck1,m,ck2,m either share a diagonal or are disjoint. The net-
work of curves can be modeled using a single polygonal
mesh (since both networks are equivalent) M = (V,E,F),
where V is the index set of the vertices, E the index set of the
edges, and F = {k} the index set of the curves. Since we only
allow diagonals to be added, the dual graph of the mesh is a
tree. It follows that we can perform our morphing method on
each of the faces (curves) ck,m, m = 0,1 separately, and then
construct a solution to the morphing problem recursively; we
begin by computing a regular homotopy for the root of the
dual graph. We then preform a breadth-first search on the
dual graph of the mesh, at every step constructing a regular
homotopy for the current face and connecting the solution of
the added face to the solution of the faces already connected,
by applying scaling and rigid motion. While this approach is
sub-optimal, it implies that the following generalization of
(4.2) is still feasible:

min
Lk,t

∑
j,k

Lk,t
j − L̄k,t

j√
L̄k,t

j Lk,t
j

2
1
2

(
Lk,t

j + L̄k,t
j

)
(8.1a)

s.t.

Lk,t
j ≥ 0 (8.1b)

∑
j

Lk,t
j eiϕ̄k,t

j = 0 ∀k ∈ F (8.1c)

∑
j,k

Lk,t
j = 1 (8.1d)

Lk,t
j = Lk′,t

j′ ∀( j, j′) shared diagonal (8.1e)

A realization of the mesh at time t can be reconstructed
from the solution Lk,t , k = 1 . . .K, and the linearly interpo-
lated external angles of the curves via breadth first search as
described above. This reconstruction is unique up to rotation
and translation, and thus does not depend on the root chosen.

Curves with different turning numbers. We now con-
sider the application of our algorithm to morphing polyg-
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onal curves p0,p1 with different turning numbers. We will
give an overview of our results. The technical explanation
appears in the paper’s supplementary material.

The theory developed above for curves with identical
turning number can be generalized to the case of curves with
different turning numbers: Feasibility of (5.1) is guaranteed,
under the additional assumption that τ(p0) and τ(p1) have
the same sign. We thus assume w.l.o.g. that 0 < τ(p0) <
τ(p1). Additionally, the number of flips through the morph
will be exactly τ(p1)− τ(p0), which is the minimal amount
of flips possible.

Direct application of our algorithm (or the angle length
method) will always cause flips in the first vertex only. We
thus propose a strategy for choosing the correct first vertex
based on minimizing work in the space of external angles.
When τ(p1)− τ(p0) = k > 1, more than one flip occurs. We
explain how our method can be modified in this case so that
the flips occur at k different vertices, chosen such that work
in the external angle space is minimized.

Figure 12 illustrates how applying the angle-length
method directly causes pinching at the wrong vertex, and
how this is fixed by our method for choosing the correct ini-
tial vertex.

Figure 12: Morphing source and target curves whose turn-
ing numbers are one and two respectively. Using the angle-
length method directly (top) gives unnatural results. Our au-
tomatic choice of the vertex at which flipping should occur
(bottom) gives a natural morph.

Convex combination of multiple curves. Our method can
be easily applied to the blending of more than two curves.
The only difference being that the ideal curve c̄t is defined
using more than two curves,

ϕ̄
t = ∑

`

t`ϕ
` r̄t = ∑

`

t`r
`

where t` ≥ 0, and ∑` t` = 1. The projection ct =P(c̄t) is per-
formed as before. Figure 13 shows an example of blending
the four curves at the corners of the square using different
weights t` to produce a grid of intermediate curves.

Homotopic morphing of b-splines using the control poly-
gon. We present an application of the monotone property

Figure 13: Morphing of the four curves at the corners of the
rectangle.

from section 6 to the morphing of b-splines using their con-
trol polygon. We provide a sufficient condition which as-
sures that morphing of b-splines via applying our morphing
method to their control polygons, will give a regular homo-
topy. If the sufficient condition doesn’t hold, it is possible to
preform subdivisions on both control polygons curves until
the sufficient condition is fulfilled.

Let us consider closed b-spline curves c : [0,1] → R2

which are piecewise polynomials of degree D ≥ 2, defined
by a sequence of increasing knots

a−D < .. . < a0 = 0 < .. . < an = 1 < .. . < an+D

and coefficients p1, . . . ,pn+D ∈ R2 so that

c(s) =
n+D

∑
i=1

pibi(s)

where bi are the b-spline basis functions supported on
[ai−D−1,ai]. The requirement that c are closed is equivalent
to requiring

pi+n−1 = pi, for i = 1, . . . ,D+1

The control polygon of c consists of the first n coefficients of
c, p = [p1, . . . ,pn−1,pn = p1]. Assume we are given c0 and
c1 of the same degree D, and defined over an identical knot
vector by their control polygons p0,p1.

Lemma 8.1. If the control polygons p0 and p1 are regular
and have the same non-zero turning number, and if all sub-
arcs [pi

j, . . . ,p
i
j+D] are monotone, then the curve ct obtained

from the morphing of the control polygons is a well defined
regular homotopy.
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An example of a b-spline
curve with D = 3 for which all
sub-arcs with D+ 1 vertices are
monotone can be seen in the in-
set.

Proof. The fact that ct are closed follows from construc-
tion. ct are C1, and therefore to show that they are regular it
is sufficient to show that their derivative is always non zero.
For s ∈ (ai−1,ai), the derivative of ct(s) = ∑

j+D
i= j pt

ibi(s)
is a positive conic combination of the edges pt

i+1 − pt
i

for i = j, . . . j + D− 1 (e.g., page 67 in [PBP02]). Since
[pt

j, . . . ,p
t
j+D] is monotone for t = 0,1, it is monotone for all

t (see section 6), and this in turn implies that positive conic
combinations of pt

i+1−pt
i cannot be zero.

9. Limitations

Our morphing algorithm is not always applicable when the
turning number of source and target curves is zero since the
feasibility of the convex projection problem isn’t guaran-
teed. The criterion for feasibility for this case is discussed
in Appendix A. Similarly, the feasibility of our morphing
scheme for curves with different turning numbers isn’t guar-
anteed when the turning numbers of both curves don’t have
the same sign.

Our convex representation of regular closed curves fixes
the angles to an ideal value, and closes the curve by allowing
the lengths to change from their ideal value. This could be
a slight disadvantage when an isometric morph is required,
since such a morph requires fixed lengths throughout the
morph. However we note that in practice our method seems
to handle isometric morphing rather well as demonstrated in
figure 4, 5,10,13.

10. Conclusion

We described an algorithm for morphing piecewise C1

curves such that the morph is a regular homotopy, and the
change in angles and lengths is ‘as linear as possible’. The
main novelty in this algorithm is our method for closing
curves such that they are regular via a convex classification
of the space of regular curves and the choice of a natural en-
ergy which is convex on this space and keeps the lengths of
the curves away from zero.

We showed that the constructed morph has several at-
tractive properties, including convexity preservation and the
smoothness of the vertex trajectories.

We presented several applications and extensions of our
method. We showed how our method can be extended to
morphing of networks of curves with simple connectivity
, and discussed morphing of curves with different turning
numbers and convex combination of multiple curves. We
also showed a sufficient condition for regular homotopic
morphing of b-spline curves using their control polygons.
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A. Proofs

Proof of Lemma 5.3 Define

A = {ϕ : Coni(eiϕ)⊆ Coni{eiϕ j : j ∈ {1,2, . . . ,n−1}}}

We need to show A = R. Note that

1. if α ∈ A, also α+ 2π ∈ A. In particular it is sufficient to
show A contains the interval [ϕmin,ϕmin +2π].

2. if α,β ∈ A and α < β < α+π, then Coni{eiα,eiβ} con-
tains all reiδ with δ ∈ [α,β]. Thus [α,β]⊆ A.

3. It follows that if ϕ1, . . .ϕn−1 satisfy |ϕ j+1−ϕ j|< π, then
[ϕmin,ϕmax]⊆ A. For n−1 = 2 this follows from the pre-
vious observation, and the general case can also be de-
duced from the previous observation by induction.

4. Now, if ϕmax − ϕmin ≥ 2π, then [ϕmin,ϕmin + 2π] ⊆ A
and we are done. Otherwise, ϕmax < ϕmin +2π < ϕmax +
π and so [ϕmax,ϕmin + 2π] ⊆ A, which again shows that
[ϕmin,ϕmin +2π]⊆ A.

Feasibility, and zero turning number. We prove a
slightly stronger version of Theorem 4.1.

Denote the set of non-singular points by Ω = [0,1] \
{s1, . . . ,sn}, and assume that ϕ, like ϕ

t from Theorem 4.1,
is piecewise continuous, and at singularities it satisfies

∀ j, |ϕ+(s j)−ϕ−(s j)|< π

Theorem A.1. There exists a C1 function r > 0 satisfying
the closing constraint

∫
reiϕ = 0 iff

sup
s1,s2∈Ω

ϕ(s1)−ϕ(s2)> π (A.1)

Theorem 4.1 follows immediately, since when the turn-
ing number isn’t zero, (A.1) holds for any ϕ

t when s1,s2 are
taken close to 0 and 1. When the turning number is zero, we
note that ϕ

0 and ϕ
1 fulfill (A.1) since the source and target

curves are closed. As a result, for any given correspondence
between c0 and c1, the correspondence can be ‘corrected’
so that there will be s1,s2 satisfying ϕ

t(s1)−ϕ
t(s2)> π for

t = 0,1 and therefore for all t ∈ [0,1]. However, there may be
correspondences in which the interpolation won’t be feasible
(unless corrected). For example, if ϕ

0 =−ϕ
1, the optimiza-

tion problem for t = 1
2 won’t be feasible.

Proof. If (A.1) doesn’t hold

ϕmax = sup
s∈Ω

ϕ(s) ; ϕmin = inf
s∈Ω

ϕ(s)

satisfy ϕmax−ϕmin ≤ π. Define ϕA = ϕmax+ϕmin
2 . Note that

for all s ∈ Ω, 〈eiϕA ,eiϕ(s)〉 ≥ 0 and there is some neigh-
borhood in Ω such that for s in the neighborhood the in-
ner product is strictly positive. Thus if a positive r with∫ 1

0 r(s)eiϕ(s)ds = 0 existed, we would get a contradiction
since

〈eiϕA ,
∫ 1

0
r(s)eiϕ(s)ds〉=

∫ 1

0
r(s)〈eiϕA ,eiϕ(s)〉ds > 0

In the other direction, if (A.1) does hold, we can choose a
sequence s1, . . . ,sn ∈Ω such that ϕ(s j) satisfy the conditions
of Lemma 5.3. Since the conditions are open, we can choose
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smooth positive b j supported in a small enough neighbor-
hood of s j , such that the neighborhood doesn’t contain sin-
gular points, and ∫ 1

0
b j(s)e

iϕ(s)ds = eiϕ j (A.2)

where ϕ j are close enough to ϕ(s j) so that they also fulfill
the conditions of Lemma 5.3. Therefore there is a positive
solution L j > 0 to the equation

n

∑
j=1

L je
iϕ j =−

∫ 1

0
eiϕ(s)ds

using (A.2) we obtain∫ 1

0
(

n

∑
j=1

L jb j(s)+1)eiϕ(s)ds = 0

Proof of Lemma 5.2. The unique minimizer Lt ∈ Rn

of (5.1) satisfies the KKT conditions: Denote the objective
function from (5.1) by f and write the constraint ∑Lt

je
iϕ j =

0 as A(t)Lt = 0 where

A(t) =
(

eiϕt
1 , . . . ,eiϕt

n

)
∈ R2×n

Since the constraints Lt
j ≥ 0 aren’t active, the KKT condi-

tions at time t can be written as:

∃ν
t ∈ R3,Lt ∈ Rn

+ solving the equations

G1(t,L,ν)≡∇ f (L)+ [ν1 ν2]A(t)+ν3~1
T = 0

G2(t,L)≡
(

LT AT (t),~1T L−1
)
= (0,0)

Denoting the hessian of f by H f and

B(t) =
[

A(t)
~1T

]
the differential of the function G(t,L,ν) =

(G1(t,L,ν),G2(t,L))
T is given by

dG(t,L,ν) =

[
∂G1
∂t H f B(t)T

∂G2
∂t B(t) 0

]
We will show that the sub-matrix of partial derivatives ac-
cording to (L,ν), [

H f B(t)T

B(t) 0

]
is non-singular for all t, and therefore by the implicit func-
tion theorem for every t there are unique (Lt ,νt) satisfying
G(t,Lt ,νt) = 0, and (Lt ,νt) is a smooth function of t. This
will prove the Lemma since Lt is exactly the unique mini-
mizer of the optimization problem at time t.

We note that H f is positive semi-definite since f is strictly
convex. According to ( [BV04] page 557), to prove non-
singularity it is sufficient to show that B(t) is full rank. To
see this, note that A(t) is full rank, since for a regular closed
curve eiϕt

j cannot all be linearly dependent. It remains to
show that there is no solution to the equation AT (t)λ =~1.
Indeed, assume such a solution exists, and choose L > 0 sat-
isfying A(t)L = 0. This causes a contradiction since

0 = LT A(t)T
λ = LT~1 > 0
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