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Abstract. The Procrustes matching (PM) problem is the problem of finding the optimal rigid
motion and labeling of two point sets so that they are as close as possible. Both rigid and non-rigid
shape matching problems can be formulated as PM problems. Recently [14] presented a novel convex
semi-definite programming relaxation (PM-SDP) for PM which achieves state of the art results on
common shape matching benchmarks.

In this paper we analyze the successfulness of PM-SDP in solving PM problems without noise
(Exact PM problems). We begin by showing Exact PM to be computationally equivalent to the
graph isomorphism problem. We demonstrate some natural theoretical properties of the relaxation,
and use these properties together with the moment interpretation of [12] to show that for exact
PM problems and for (generic) input shapes which are asymmetric or bilaterally symmetric, the
relaxation returns a correct solution of PM.

For symmetric shapes, PM has multiple solutions. The non-convex set of optimal solutions of
PM is strictly contained in the convex set of optimal solutions of PM-SDP, so that ‘most’ solutions
of PM-SDP will not be solutions of PM. We deal with this by showing the solution set of PM to be
the extreme points of the solution set of PM-SDP, and suggesting a random algorithm which returns
a solution of PM with probability one, and returns all solutions of PM with equal probability. We
also show these results can be extended to the almost-exact case. To the best of our knowledge, our
work is the first to achieve exact recovery in the presence of multiple solutions.

1. Introduction. Shape comparison is a central task in many fields such as com-
puter graphics, computer vision, medical imaging and biology in general. The input
of the problem is a pair of shapes, often represented by d-dimensional point clouds
P ∈ Rd×n, Q ∈ Rd×n, where a point is represented by the column of a matrix. The
goal is to determine how similar the shapes are to each other, typically by computing
a distance between shapes which is invariant to a prescribed class of shape preserving
deformations.

In rigid shape matching problems, shape preserving deformations are rigid mo-
tions, as well as permutations of the point cloud which change the order the points
are given but not the shape defined by them. A distance between shapes for rigid
problems can be defined by finding a linear isometry R ∈ O(d), a translation t ∈ Rd

and a permutation X ∈ Πn minimizing the Euclidian distance between the point
clouds. Centralizing the point clouds causes the optimal translation to be t = 0, and
we arrive at the following optimization problem:

d2(P,Q) = min
X,R

‖RP −QX‖2F(1a)

s.t. X ∈ Πn(1b)

R ∈ O(d)(1c)

We will refer to this optimization problem as the Procrustes matching (PM) problem.
We note that both the minimal value and the minimizers are of practical importance.
The minimal value is a measure of the similarity of the shapes, while the minimizers
R,X enable correct alignment and labeling of the shapes.

For non-rigid shapes, shape preserving deformations also include intrinsic non-
rigid isometries. In computer graphics, a popular strategy for tackling the non-rigid
problem is embedding the shapes in a higher dimensional space, where non-rigid
isometries of the shapes are approximated by linear isometries in the high dimen-
sional space (e.g., [15]) . As a result the non-rigid problem can also be formulated as
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Fig. 1. Examples of non-rigid matching results obtained by PM-SDP. Results are visualized
by transforming a color map on the source shape (left) to the target shape (right) according to the
correspondence found by PM-SDP.

PM, though now d is high dimensional as opposed to the rigid case where typically
d = 3.

PM is a non-convex optimization problem and global minimization is difficult.
In fact we show that even the subproblem of exact PM is difficult. Exact PM refers
to the problem of deciding whether d(P,Q) = 0 or not, and the related problem of
finding minimizers (R,X) to (1) when the Procrustes distance is zero. We show this
by proving

Theorem 1. There is a polynomial reduction from exact GM to exact PM, and
vice versa.

Exact GM is a well studied problem which is not yet known to be either polynomial or
NP-complete, although recently it has been shown to be solvable in quasi-polynomial
time [3]. In [14] we presented a method for approximating the solution of PM by
formulating a semi-definite convex relaxation which we name PM-SDP. The relax-
ation is constructed using standard methods for semi-definite relaxations of quadratic
problems. Using results on semi-definite matrix completion, the relaxation is reduced
to a considerably more efficient SDP relaxation which is equivalent to the original
relaxation. The usefulness of PM-SDP for rigid and non-rigid matching problems was
demonstrated as well. Some examples of non-rigid shape matching using PM-SDP
are presented in Figure 1.

Our main goal in this paper is to theoretically justify the successfulness of PM-
SDP on exact or near exact PM problems. This successfulness was demonstrated
empirically by the non-rigid results in [14] and by experiments presented there which
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showed that for exact and almost-exact problems the correct solution of PM was re-
trieved. We show that while solving exact PM is computationally hard in general,
under assumptions which are typically valid for shape matching problems, PM-SDP
is guaranteed to correctly solve exact and near-exact PM problems. In particular our
assumptions are valid for ‘most’ asymmetric or bilaterally symmetric shapes. The
latter class includes many important shape matching instances such as humans and
other animals; for example, all the shapes in Figure 1 are bilaterally symmetric. For
simplicity of the exposition we currently refer to P which satisfy our assumptions as
‘generic’, and explain our assumptions afterwards.

Apart from the exactness results, we also show some natural properties of the
relaxation. We show invariance of the algorithm to orthogonal transformation and
relabeling of the input, that the R,X coordinates of the solution are always in the
convex hull of O(d)×Πn, and that the objective value d(P,Q) of PM-SDP is always
non-negative, and is never larger that d(P,Q).

1.1. Main results. From the properties of the relaxation we just mentioned it
follows that for exact problems

0 ≤ d(P,Q) ≤ d(P,Q) = 0

so that PM-SDP attains the correct objective value for exact problems. Our goal
is to show that PM-SDP attains the correct minimizers as well.

For exact problems, we will refer to minimizers of PM as exact solutions and will
call minimizers of PM-SDP convex exact solutions. Note that the set of convex exact
solutions is a convex set containing the set of exact solutions. For generic asymmetric
point-clouds we show that these two sets are equal:

Theorem 2 (asymmetric version). Assume P is generic and asymmetric, and
d(P,Q) = 0. Then PM-SDP has a unique convex exact solution, which coincides with
the unique exact solution of PM .

For symmetric P ,Q, there are several exact solutions. Each such solution is also
a convex exact solution. In fact, all convex combinations of these solutions will be
convex exact solutions as well, so that in the symmetric case convex exact solutions
will not necessarily be exact solutions. To deal with this problem we will need some
notation:

We denote the set of exact solutions by ISO(P,Q) and the projection of this
set onto the R coordinate by ISOR(P,Q). We refer to members of this set as exact
orthogonal solutions. Similarly we denote the set of convex exact solutions byN (P,Q)
and its projection onto the R coordinate by NR(P,Q). We refer to the members of
this set as convex exact orthogonal solutions. We prove that the extreme points of
the set of convex exact orthogonal solutions is exactly the convex hull of the set of
exact orthogonal solutions:

Theorem 2 (symmetric version). Assume P is generic and d(P,Q) = 0. Then

ISOR = ext(NR)

where ext(NR) denotes the extreme points of NR.

Under the condition of the theorem, we obtain a semi-definite characterization
of the convex hull of the optimal set of PM, as the intersection of the feasible set of
PM-SDP with the hyperplane defined by constraining the objective to be zero. We
can then obtain extreme points (=exact orthogonal solutions) by a random algorithm
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(a) (b) (c)

Fig. 2. An experiment illustrating our main result. We apply PM-SDP to bilaterally symmetric
point clouds P = Q seen in (a). PM has two solutions (Ri, Xi), i = 0, 1, where Ri are diagonal
matrices with values [1, 1] or [−1, 1] on the diagonal. The solution of PM-SDP (the red dot in (b) )
is a convex combination of R0 and R1 as predicted by Theorem 2. By applying a random projection
the correct solutions of PM (purple dots in (b)) are obtained with equal probability as seen in the
pie chart in (c). This is in accordance with Theorem 3.

which maximizes random linear energies over this set. This strategy for obtaining
extreme points was suggested by Barvinok in [5]. We prove that if the linear energies
are selected according to the uniform distribution on the unit sphere, then

Theorem 3. The random algorithm returns an exact solution with probability
one. Moreover the probability distribution induced on the exact solutions is uniform.
We also show the random algorithm can be adapted to the almost exact case, and
maintain similar theoretical guarantees.

An experiment illustrating our main results is shown in Figure 2.
Related work. A popular strategy for local minimization of PM is the ICP al-

gorithm [6, 16] which iteratively solves for R and then X, while holding the other
coordinate fixed. ICP enjoys excellent scalability, but requires good initialization to
avoid local minima. Another popular strategy is RANSAC [8] which repeatedly ran-
domly selects d+1 points from each shape and finds the optimal rigid motion between
them. The global rigid motion is then found or approximated by applying a voting
scheme to a sufficient number of trials. For high dimensional data this method is
problematic since its complexity is exponential in d.

[11] propose a natural convex relaxation to PM by optimizing over the convex hull
of the feasible set O(d)×Πn. This relaxation is faster than PM-SDP but is provably
less accurate (see [10] for a similar argument for the graph matching problem). A
drawback of this relaxation is that while exact recovery is guaranteed for certain
asymmetric shapes, it is also known to fail for centralized point clouds since in this
case R = 0, X = 1

n11
T is always a feasible zero-objective solution.

There are many examples of convex relaxations of non-convex problems for which
exact recovery results are available, e.g., [17, 9, 1], often under certain assumptions on
the data. The papers mentioned above all address situations in which the non-convex
problem has a unique solution and show that the relaxation has a unique solution
as well. To the best of our knowledge our treatment here is the first proof of exact
recovery for a relaxation of symmetric problems which possess multiple solutions.

1.2. Conditions. We now explain our assumptions on the point cloud P . A
weak assumption we use is that P does not include the same point twice. Our main
assumption is that the spectrum of the matrix PPT is simple (all eigenvalues have
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unit multiplicity). This assumption implies that exact orthogonal symmetries are
compositions of reflections with respect to the principal axes of P . In other words,
in the principal axes basis an orthogonal symmetry is diagonal, with diagonal entries
in {−1, 1}. In particular all symmetries are bilateral (R2 = Id). We say the R is a
member of {−1, 1}d if it is such a diagonal matrix.

The simple spectrum assumption and the weaker bounded eigenvalue multiplicity
assumption are common assumptions in the exact graph matching literature [4, 1]. It
is known that in this case exact GM can be solved by an algorithm which is polynomial
in the input size but exponential in the eigenvalue multiplicity. This suggests that
exact recovery for PM-SDP should fail at some level of eigenvalue multiplicity. Indeed
we provide examples where such failures occur even for multiplicity two.

Our third and final assumption is the faithfulness assumption. We say a point Pj

is faithful, if for any R ∈ {−1, 1}d for which RPj is a point of P , R is an orthogonal
symmetry. We say that P is faithful if it contains at least one faithful point.

An illustration of the faithfulness condition is given in the inset.
The image on the left of the inset shows a shape from the Scape
dataset [2] which when sampled has a faithful point marked in green.
Applying the reflectional symmetry R ∈ ISOR(P, P ) to
the point in green gives another green point on the shape,
while applying R ∈ {−1, 1}2 which aren’t symmetries
gives points which aren’t on the shape (dotted, light
green). The image on the right shows a synthetic example
of a point-cloud where all points are unfaithful, since the
point-cloud is asymmetric but each point can be reflected
to a different point in the point cloud.

Our experiments show that PM-SDP is able to correctly solve the unfaithful exact
PM problem displayed in the inset, as well as similar randomly generated problems.
Thus, in contrast to the simple spectrum condition which is tight, we do not currently
know whether the faithfulness condition can be removed or replaced by a weaker
condition.

1.3. Paper organization. We begin by presenting our SDP relaxation for PM
in Section 2. We prove the theoretical properties of the relaxation in Section 3 and
use them in Section 4 to prove Theorem 2. In Section 5 we describe the random
algorithm for obtaining extreme points and prove Theorem 3. We then explain how
this result can be extended to accommodate near exact problems. In Section 6 we
present some experiments which illustrate our results, and examine the behavior of
PM-SDP for exact problems which don’t meet the conditions of our analysis. Finally
we show the equivalence of exact graph matching and exact PM in Section 7.

1.4. Notation. We denote the set {1, . . . , n} by [n].
We denote polynomials of degree ≤ r in x = (x1, . . . , xN ) by Pr(x).
We denote the feasible set of (1) by G = O(d)×Πn.
We denote the j-th column of a matrix X ∈ Rn×n by Xj ∈ Rn×1, and the i-th

row by Xi? ∈ R1×n. Expressions such as XT
j should be interpreted as (Xj)

T (as

opposed to (XT )j).
We denote by 1 the vector 1 = (1, 1, . . . , 1)T ∈ Rn×1. All vectors are column

vectors unless stated otherwise.
Real symmetric n × n matrices are denoted by S(n). We use A � 0 to denote

positive semi-definite matrices.
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2. Convex relaxation. PM can be formulated using quadratic polynomials in
the entries of R,X. For generality of the exposition, as well as for notational conve-
nience, we will now review a common strategy for semi-definite relaxation of quadratic
optimization problems (see [13] for a review) and will then state the formulation of
the PM-SDP relaxation from [14]. We present the relaxation using the terminology of
[12], which we find helpful for noting properties of the relaxation which are otherwise
less apparent.

2.1. SDP relaxations for quadratic optimization problems. We consider
quadratic optimization problems of the form

min
x∈RN

f0(x)(2a)

s.t. fs(x) = 0, s = 1, . . . , S(2b)

where fs, s = 0, . . . , S are quadratic polynomials. We denote the set of points x
satisfying (2b) by K. We will assume K is compact. This non-convex optimization
problem can be rephrased as an equivalent convex problem over the infinite dimen-
sional space P(K) of probability measures supported in K:

min
µ∈P(K)

µ[f0] =

∫
f0dµ(3)

The equivalence is in the sense that the optimal values of both problems are equal, and
each solution x of (2) defines a solution δx of (3). Solutions of (3) can also be (possibly
continuous) convex combinations of such solutions δx. We use this equivalence to
construct a finite dimensional convex relaxation of (2). Instead of considering P(K)
we will consider a supersetM consisting of (not necessarily positive) linear functionals
on C(K). A member µ ∈ M must fulfill the following conditions:

1. µ[1] = 1
2. For all s, µ[fs] = 0, for s = 1, . . . , S.
3. For all p ∈ P1(x), µ[p

2] ≥ 0. If µ satisfies this property we write µ � 0.
Note that indeed P(K) ⊂ M since every probability measure on K satisfies these
conditions; in fact it satisfies the last condition for every non-negative integrable
function. Applying this relaxation to (3) gives

min
µ∈M

µ[f0](4a)

s.t. µ[1] = 1(4b)

µ[fs] = 0, s = 1 . . . S(4c)

µ � 0(4d)

To see this is indeed a finite dimensional semi-definite program note that in (4) µ is
only applied to polynomials in P2(x) and therefore the unknowns of the problem are

(5)
(
µ[1], µ[x1], . . . , µ[xN ], µ[x2

1], µ[x1x2], . . . , µ[x
2
N ]
)

Equations (4a)-(4c) are all linear in the unknowns, while (4d) is a semi-definite con-
straint as explained next. For p, q ∈ P1(x)

p(x) = pT

(
1
x

)
, q(x) = qT

(
1
x

)
6



where p,q are the coefficient vectors of p, q. Then

µ[pq] = µ

[
pT

(
1
x

)(
1 xT

)
q

]
= pTµ

[
1 xT

x xxT

]
q

Where for a function F : RN → Rn×k such that Fij(x) ∈ P2(x) we define µ[F ] by
applying µ to each coordinate, i.e., µ[F ]ij = µ[Fij ]. It follows from (2.1) that

µ � 0 if and only if µ

[
1 xT

x xxT

]
� 0

We denote the set of feasible solutions of (4) by MF .

2.2. Properties. We present some simple but important consequences of the
discussion above:

Proposition 4. Assume µ ∈ MF and p ∈ P1(x),
1. If µ[p2] = 0 then µ[pg] = 0 for all g ∈ P1(x).
2. µ[p2] ≥ µ[p]2.

Proof. For any positive c,

µ
[
(c−1p± cg)2

]
≥ 0

which implies that

2|µ[pg]| ≤ c−2µ[p2] + c2µ[g2]

The first claim follows by taking c → 0. The second claim follows by choosing c = 1
and taking g to be the constant function g =

√
µ[p2].

An immediate consequence is that if p1, . . . , pk ∈ P1(x) all satisfy µ[p2i ] = 0, then
µ[f ] = 0 for all members f of the vector space

〈p1, . . . , pk〉2 = {f |f =

k∑
i=1

pigi, gi ∈ P1(x)}

2.3. Convex relaxation of the Procrustes problem. The PM problem is
equivalent to the quadratic optimization problem:

min
X,R

‖RP −QX‖2F(6a)

s.t. X1 = 1 , 1TX = 1T(6b)

XjX
T
j = diag (Xj) , j = 1 . . . n(6c)

RRT = Id , RTR = Id(6d)

where for a vector v, diag(v) is the diagonal matrix whose diagonal entries are the
entries of v. We note that (6c) follows from the fact that the entries of each column
Xj are in {0, 1}, and each column has only one non-zero entry. The equivalence of
PM with (6) is explained in full detail in [14].

Applying the semi-definite relaxation described in the previous section to the
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quadratic formulation of PM we obtain our formulation for PM-SDP:

d2(P,Q) = min
µ

µ
[
‖RP −QX‖2F

]
(7a)

s.t. µ[1] = 1(7b)

µ[X]1 = 1 , 1Tµ[X] = 1T(7c)

µ[XjX
T
j ] = diag (µ[Xj ]) , j = 1 . . . n(7d)

µ[RRT ] = Id , µ[RTR] = Id(7e)

µ � 0(7f)

An important property of PM-SDP (which is not needed for our discussion here)
is that (7f) can be replaced with the semi-definite constraints

(8) µ

[
1 xT

j

xj xjx
T
j

]
� 0, j = 1, . . . , n

to obtain an equivalent relaxation. Here xj is a vector containing the entries of R and
the column Xj . In applications often n >> d, and in this case the O(n + d2) sized
matrices involved in (8) are considerably smaller than the O(n2 + d2) matrix in (7f).
As a result the equivalent relaxation is considerably more efficient than (7). For an
explanation of the equivalence see [14].

3. Properties of relaxation. We present some natural properties of the relax-
ation, which will be helpful for the proof of our main theorem. We begin by presenting
two consequences from our discussion above.

Proposition 5. For µ ∈ MF , the objective (7a) satisfies

µ
[
‖RP −QX‖2F

]
≥ ‖µ[R]P −Qµ[X]‖2F

In particular d is bounded from below by zero, and if d(P,Q) = 0 then

µ[R]P = Qµ[X]

Proof of proposition 5. We note that ‖RP −QX‖2F can be rewritten as
∑

i,j p
2
ij

for pij = (RP −QX)ij ∈ P1(x). Using Proposition 4 we obtain

µ
[
‖RP −QX‖2F

]
=
∑
i,j

µ
(
p2ij
)
≥
∑
i,j

µ (pij)
2
= ‖µ[R]P −Qµ[X]‖2F ≥ 0

Proposition 6. µ[R], µ[X] are in the convex hull of the orthogonal transforma-
tions and permutations, respectively.

Proof of proposition 6 . We begins by showing that µ[X] is in the convex hull of
Πn, i.e., that µ[X] is doubly stochastic. The rows and columns of µ[X] are constrained
to sum to one in (7c), and each coordinate of µ[X] must be non-negative since by (7d)

µ[Xij ] = µ[X2
ij ] ≥ 0

The convex hull of orthogonal matrices are matrices whose 2-norm is not larger than
one. For arbitrary v ∈ Rd using Proposition 4 and (7e) we have

‖µ[R]v‖22 ≤ µ
[
‖Rv‖22

]
= µ

[
vTRTRv

]
= vTµ[RTR]v = ‖v‖22

and therefore ‖µ[R]‖2 ≤ 1.
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3.1. Compactness. We show thatMF is compact. To show that all coordinates
of a semi-definite matrix are bounded, it is sufficient to show that its trace is bounded.
Therefore for general quadratic relaxations it is sufficient to show that

∑
i µ[x

2
i ] is

bounded. In our case x consists of the coordinates of R,X, and so the compactness
of MF follows from∑

ij

µ[X2
ij ] +

∑
k,`

µ[R2
k`] =

∑
ij

µ[Xij ] +
∑
k

µ[(RRT )kk] = n+ d

3.2. Invariance to coordinate change and reordering. The Procrustes dis-
tance d(P,Q) is invariant to orthogonal change of coordinates and reordering of the
points, that is given (R0, X0), (R1, X1) ∈ G we have

(9) d(P,Q) = d(P̂ , Q̂)

where P̂ = R0PX0 and Q̂ = R1QX1. We now show that our convex approximation
d satisfies (9) as well.

We define
(R0, R1, X0, X1)∗(µ) = µ̂

where
µ̂[p(R,X)] = µ[p(R1RRT

0 , X
T
1 XX0)]

It can be verified that if µ ∈ MF then µ̂ ∈ MF as well. Also note that
(R0, R1, X0, X1)∗ is a linear map whose inverse is (RT

0 , R
T
1 , X

T
0 , X

T
1 )∗. Finally, note

that ∥∥∥RP̂ − Q̂X
∥∥∥2
F
=
∥∥(RT

1 RR0)P −Q(X1XXT
0 )
∥∥2
F

which implies that

µ̂

[∥∥∥RP̂ − Q̂X
∥∥∥2
F

]
= µ

[
‖RP −QX‖2F

]
It follows that (9) holds, and there is a linear isomorphism taking the minimizers of
PM-SDP(P,Q) to the minimizers of PM-SDP(P̂ , Q̂).

4. Exact recovery. In this section we prove our main theorem (Theorem 2).
We are given P,Q which satisfy the conditions of the theorem. Our goal is to show
that the set of exact orthogonal solutions ISOR(P,Q) is equal to the extreme points
of the set of convex exact orthogonal solutions NR(P,Q). In fact it is sufficient to
prove that the convex hull of ISOR(P,Q) is equal to NR(P,Q). This is because the
extreme points of conv ISOR(P,Q) are precisely ISOR(P,Q), which in turn follows
from the fact that all orthogonal matrices are extreme points of conv(O(d)).

The inclusion conv ISOR(P,Q) ⊆ NR(P,Q) follows immediately from the fact
that each exact orthogonal solution is also a convex exact orthogonal solution.

The proof of the opposite inclusionNR(P,Q) ⊆ conv ISOR(P,Q) is more involved.
The remainder of this section is devoted to proving this inclusion.

We first note that using the invariance of PM-SDP to applying permutations and
orthogonal transformations we can assume w.l.o.g. that P = Q since by assumption
d(P,Q) = 0. Additionally we can assume that PPT is a diagonal matrix denoted by
D. To see this we use the spectral decomposition

UPPTUT = D
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and note that P̂ = UP satisfies P̂ P̂T = D.
By multiplying the equation RP = PX with its transpose it can be seen that

all exact solutions (R,X) ∈ ISO(P, P ) satisfy RD = DR. In the simple spectrum
case this implies that R is diagonal and Rjj ∈ {−1, 1}. Thus the symmetry group of
P can be identified with a subgroup of {−1, 1}d. The proof of the theorem is based
on the following generalization of these properties of exact solutions to exact convex
solutions:

Lemma 7. Assume µ ∈ N . Then

1. µ
[
‖RD −DR‖2F

]
= 0.

2. µ
[
R2

ij

]
= δij.

3. µ[R] is diagonal, and µ[R]jj ∈ [−1, 1].
4. If µ[X`j ] > 0 then there is some R ∈ {−1, 1}d such that RPj = P`.

Proof. For given µ ∈ N we have

µ
[
‖RD −DR‖2F

]
= µ

[
tr
(
DRTRD

)]
− 2µ

[
tr
(
RDRTD

)]
+ µ

[
tr
(
DRRTD

)]
We show the expression above vanishes by showing that all three summands in

the last expression are equal to ‖D‖2F . For the first and third summands this follows
immediately from the linearity of µ and the constraint (7e). For the second summand,
recall that D = PPT and note that

tr
(
RPPTRTPPT

)
− tr

(
PXXTPTPPT

)
∈ 〈RP − PX〉2

Therefore

µ
[
tr
(
RDRTDT

)]
= tr

(
Pµ[XXT ]PTPPT

)
= ‖D‖2F

where for the last equality on the right we use the fact that

µ[XXT ] =
∑
j

µ[XjX
T
j ] =

∑
j

diag (µ[Xj ]) = In

This proves the first claim. We now have that

0 = µ
[
(RD −DR)2ij

]
= (Djj −Dii)

2µ[R2
ij ]

Since the diagonal elements of D are distinct by the simple spectrum assumption, we
see that for i 6= j we have µ[R2

ij ] = 0 while when i = j we have

µ[R2
ii] =

∑
j

µ[R2
ij ] = µ[(RRT )ii] = 1

This proves the second claim. Using Proposition 4 it follows immediately that µ[R]
is diagonal, and µ[R]jj ∈ [−1, 1].

We now prove our last claim. We assume µ[X`,j ] > 0, and our goal is to show
that for any i ∈ [d], |Pi`| = |Pij |. We fix some i and define a vector v by

vk = P 2
ik

Our goal is to show that v` = vj . Note that for all k,

vk = P 2
ikµ[R

2
ii]

(a)
= µ[(RP )2ik]

(b)
= µ[(PX)2ik]

(c)
= vµ[Xk]
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where:
(a) follows from the fact that (RP )2ik − P 2

ikR
2
ii is a member of 〈Rij | j 6= i〉2.

(b) follows from the fact that

(RP )2ik − (PX)2ik = (RP − PX)ik(RP + PX)ik ∈ 〈(RP − PX)ik〉2

and (c) follows from

µ[(PX)2ik] = µ[Pi?XkX
T
k P

T
i?] = Pi?diag (µ[Xk])P

T
i? = vTµ[Xk]

As (4) holds for all k, it follows that vT = vTµ[X]. Since µ[X] is doubly stochastic
it can represented as a convex combination of permutation matricesX(s). Accordingly
vT is a convex combination of the vectors vTX(s) whose norm is no larger than
||v||, and this implies that vTX(s) = vT for all s. There must be some s for which
X`j(s) = 1 and therefore

vj = (vTX(s))j = v`

We now explain how the theorem is proved from the lemma. Let us assume
w.l.o.g. that P1 is the faithful column of P . Let J be the collection of indices ` such
that µ[X`1] is strictly positive. By the last part of the lemma, for each ` ∈ J there
is some R(`) ∈ {−1, 1}d such that R(`)P1 = P`. Moreover due to faithfulness R(`) is
an exact orthogonal solution.

Now note that for all i ∈ [d],

µ[Rii]Pi1 = µ[(RP )i1] = µ[(PX)i1] =

(∑
`∈J

µ[X`1]Rii(`)

)
Pi1

Note that if all coordinates of P1 are non-zero then for each i we can cancel out Pi1,
so that µ[R] is a convex combination of exact orthogonal solutions as required:

(10) µ[R] =
∑
`∈J

µ[X`1]R(`)

For the general case we define R̂(`) to be the diagonal matrix with diagonal
elements

R̂(`)ii =

{
R(`)ii if Pi1 6= 0
µ[R]ii if Pi1 = 0

We note that (10) holds when R(`) is replaced with R̂(`). Thus it is sufficient to show
that each R̂(`) is a convex combination of exact orthogonal solutions.

Since the diagonal elements of µ[R] are in [−1, 1], each R̂(`) can be written as a
convex combination of matrices R(`, α) ∈ {−1, 1}d satisfying the condition

R(`, α)ii = R̂(`)ii = R(`)ii if Pi1 6= 0

Note that R(`, α)P1 = R(`)P1 = P` and so all matrices R(`, α) are exact orthogonal
solutions due to faithfulness. This concludes the proof of the symmetric version of
the theorem.

In the asymmetric case, what we showed is that PM-SDP returns the unique exact
orthogonal solution of PM. It remains only to show that the X coordinate obtained
from PM-SDP agrees with the exact solution as well. This follows from the following
lemma
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Lemma 8. Assume P,Q satisfy d(P,Q) = 0 and Q has no repeated points. Let
(R(0), X(0)) ∈ G be an exact solution for PM. Then X = X(0) is the unique doubly
stochastic solution to the equation

(11) R(0)P = QX

Proof. Note that since the columns of Q are pairwise disjoint X(0) is the unique
solution of (11) over the set of permutation. It remains to show this is the case over
the set of doubly stochastic matrices as well.

Note that for any doubly stochastic X,

0 ≤ ‖R(0)P −QX‖2F = ‖R(0)P‖2F − 2trR(0)PXTQT + ‖QX‖2F

and therefore

trR(0)PXTQT ≤ 1

2

(
‖R(0)P‖2F + ‖QX‖2F

)
≤ 1

2

(
‖P‖2F + ‖Q‖2F

)
= ‖P‖2F

Therefore, the linear functional trR(0)PXTQT is maximized by X = X(0) and for
any other permutation it is suboptimal. It is therefore suboptimal also for any other
matrix in the convex-hull of the permutations, namely the doubly-stochastic matrices.

5. Finding extreme points. Our goal in this section is to explain how the
characterization of the convex hull of exact orthogonal solutions from Theorem 2 can
be used to obtain all exact solutions.

The main observation is that according to Theorem 2, the convex hull of the
exact orthogonal solutions is the intersection of the feasible set of the relaxation with
the hyperplane defined by constraining the objective to be zero. Therefore, it is
possible to preform convex optimization over this set. More specifically, we randomly
draw a matrix W ∈ Rd2

with a uniform distribution over the unit sphere (w.r.t.
the Frobenius norm) and obtain exact orthogonal solutions by solving the following
optimization problem:

max
µ

trWµ[R](12a)

s.t. µ ∈ MF(12b)

µ[‖RP −QX‖2F ] = 0(12c)

We now show that the random algorithm returns a unique exact solution with prob-
ability one, and the probability of obtaining each exact solution is uniform.

Proof of Theorem 3. Let (R(i), X(i)), i = 0, . . . , r − 1 be the members of
ISO(P,Q). We begin by considering the case P = Q. In this case ISOR(P, P ) is
a group and we index the group so that R(0) = Id.

A maximizer µ for (12) satisfies µ[R] = R(i) iff W is a member of the set

Ai = {W | tr(WTR(i)) > tr(WTR(j)),∀j 6= i}

clearly the union of Ai is a disjoint union, and has probability one. We note that
R(`)A0 = A`. Additionally, the probability of the sets A` is preserved under linear
isometries of the space Rd×d endowed with the Frobenius inner product, and the map
W 7→ R(`)W is such an isometry. Therefore the sets A` = R(`)A0 all have the same
probability.

12



The general case where P 6= Q follows from the fact that R(0)T ISOR(P,Q) =
ISOR(P, P ).

To conclude the argument, note that by lemma 8 µ[R] = R(i) implies that µ[X] =
X(i).

5.1. Stability. In applications PM problems are usually contaminated with a
certain amount of noise. It is therefore important to verify that the solutions of
near-exact problems can be recovered as well. To this end, we now consider the case
of point clouds P (δ), Q(δ) which are obtained by perturbing point clouds P (0) = P
and Q(0) = Q which fulfill the conditions of Theorem 2.

We propose a modified version of the algorithm described above to obtain all
solutions of the unperturbed problem. Note that generally PM(P (δ), Q(δ)) won’t
have exact convex solutions (solutions with zero optimal objective value), so that (12)
will become infeasible due to (12c). Therefore we relax this constraint and instead
require that the objective of PM-SDP is smaller than some suitable ε(δ). This results
in the following optimization problem:

max
µ

trWµ[R](13a)

s.t. µ ∈ MF(13b)

µ[‖RP (δ)−Q(δ)X‖2F ] ≤ ε(δ)(13c)

An optimal choice for ε(δ) is

ε̄(δ) = max
i=0,...,r−1

‖R(i)P (δ)−Q(δ)X(i)‖2F

This choice assures that all members of ISO(P,Q) are in the feasible set, while ex-
cluding as many irrelevant solutions as possible.

We claim that when P (δ), Q(δ) are close to P,Q, we obtain close to exact so-
lutions, with close to uniform probability. To make this statement more precise we
need to introduce some notation. We denote the minimizers of (13) by µδ(W ), and
their R coordinate by Rδ(W ). Note that both µδ(W ) and Rδ(W ) are sets which may
generally contain more than one solution. Also note that when δ = 0 the optimiza-
tion problems (13) and (12) are identical, and so R0(W ) is uniquely defined almost
everywhere and attains all exact orthogonal solutions with uniform probability due
to theorem 3. The solutions Rδ(W ) are close to the unperturbed solution R0(W ) if

rδ(W ) = inf{r| Rδ(W ) ⊆ Br(R0(W ))}

is small. We would like to show that for any η > 0,

Prob{W | rδ(W ) ≥ η} δ→0−→ 0

In other words, we claim that rδ converges in probability to zero. We prove a slightly
stronger claim

Proposition 9. Assume ε(δ) ≥ ε̄(δ) and ε(δ)
δ→0−→ 0. Then

rδ
a.s.−→ 0

In Appendix A we show that rδ is Borel measurable and so the probabilistic language
used above is justified. The proposition above is essentially a known result on per-
turbations of SDPs (see [7] pages 492-493). We include the proof for completeness.
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Proof. We show pointwise convergence for every W such that R0(W ) is uniquely
defined. Assume by contradiction that there is a sequence δn −→ 0 such that
rδn(W ) −→ a > 0. We can then choose µn ∈ µδn(W ) such that

(14) |µn[R]−R0(W )| −→ a

By moving to a subsequence, we can assume that µn converges to some µ. We obtain
a contradiction to (14) by showing that µ[R] = R0(W ). This is because

trWR0(W )
(∗)
≤ trWµn[R] −→ trWµ[R]

(∗∗)
≤ trWR0(W )

where (∗) follows from the fact that by assumption R0(W ) is a feasible point of (13),
and (∗∗) follows from the fact that µ is a feasible point of (12) since ε(δ) −→ 0.
It follows that µ is a maximizer of (12) and therefore µ[R] = R0(W ) due to the
uniqueness of R0(W ).

6. Experiments. In this section we present experiments illustrating our theoret-
ical results, and experimentally explore the exactness of PM-SDP in cases not covered
by our analysis, i.e., when either the simple spectrum condition or the faithfulness
condition fail.

To illustrate our results for the asymmetric case we conducted the following ex-
periment. A point cloud P was generated from an i.i.d. normal distribution, and then
centralized. Q was obtained by applying random R,X to P . We then solved PM-SDP
on the generated point cloud. This process was repeated one-thousand times and in
all experiments the unique exact solution with objective value 0 was obtained as can
be seen in Figure 4(a).

To illustrate our results for the symmetric case we conducted an experiment
which we have already mentioned earlier (Figure 2). We solve PM-SDP on planar
point clouds P = Q whose symmetries are

R0 = I2, R1 =

(
−1 0
0 1

)
As predicted, the R coordinate of PM-SDP is in the convex hull of Ri, i = 0, 1.
We then ran one-hundred iterations of the random algorithm described in Section 5.
As predicted, in all iterations one of the solutions Ri was attained (up to a small
numerical error). We also proved that R0 and R1 should be attained with uniform
probability. In this case R0 was attained in 51 experiments and R1 in 49 experiments.

We now discuss the cases which are not covered by our analysis. We begin by
applying PM-SDP to the asymmetric unfaithful example from Section 1. The results
are shown on the top row of Figure 3. We solve PM-SDP, taking P (green) to be the
unfaithful shape, andQ (blue) to be a relabeled, rotated version of P . It turns out that
although P doesn’t meet the conditions of Theorem 2 due to unfaithfulness, PM-SDP
is still able to recover the correct orthogonal transformation and permutation. Indeed,
as can be seen on the right, applying the obtained transformation to P we are able
to align the two shapes perfectly.

In contrast, we provide an example for a shape with multiple eigenvalues where
exact recovery is not obtained. These results are shown in the bottom row of Figure 3.
The input shape P is asymmetric, but applying PM-SDP to P (green) and Q (blue)
chosen to be a rotated, relabeled version of P , does not yield a solution in G. To obtain
a solution in G we used the projection procedure described in [14]. The obtained
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Fig. 3. Exact recovery when the conditions of Theorem 2 aren’t met. By applying PM-SDP to
the unfaithful point clouds P (green, top left) and Q (top blue) the correct orthogonal transformation
and permutation taking P to Q can be reconstructed (RP , green, top right). The bottom row shows
that PM-SDP fails to align the shapes P and Q which violate the simple spectrum condition.

solution is still not the correct exact solution as shown in the image on the bottom
right which is not aligned correctly.

We also conducted some random experiments. The results are summarized in
Figure 4. Each experiment was run one-thousand times on point clouds P and Q
obtained from P by applying a random orthogonal transformation and permutation.

Experiment (b) quantitatively shows that exact recovery is obtained for unfaithful
shapes as well. Each P here is generated by superimposing two shapes with different
reflectional symmetry as in the unfaithful example in Figure 3.

Experiment (c) quantitatively shows that exact recovery isn’t always obtained
for shapes with eigenvalue multiplicity. Here the two dimensional asymmetric shapes
P are generated by superimposing two shapes with non-bilateral symmetry groups.
In all cases PM-SDP returns a solution whose R,X coordinates aren’t in G, and we
project onto G using the scheme described in [14]. It can be seen that in some cases
the PM objective obtained from R,X after projection is non-zero although an exact
solution does exist.

Experiment (d) examines a different class of shapes with eigenvalue multiplicity
for which exact recovery is obtained. Here P is generated from an i.i.d. normal
distribution. It is then centralized and scaled along one of its principal axes so that
a shape with eigenvalue multiplicity is obtained. In all cases PM-SDP returned the
correct exact solution of the problem (even before projection).

To summarize, we are not aware of simple spectrum, unfaithful shapes, for which
PM-SDP does not achieve exact recovery. Thus a possible direction for future work
is investigating whether this condition can be removed or weakened. In contrast
we provide examples of shapes with double eigenvalue multiplicity for which exact
recovery fails, and thus the simple spectrum condition is tight.

7. Exact graph matching. The purpose of this section is establishing that
PM, and in fact even the subproblem of exact PM, is computationally hard. We do
this by showing equivalence of exact PM and exact graph matching.

For our discussion here we define the exact PM problem as the problem of deciding
whether d(P,Q) = 0 for given point clouds P,Q ∈ Rd×n. The input of the exact graph
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Fig. 4. Exact recovery experimental evaluation. When the conditions of the (asymmetric)

exact recovery theorem are met, an optimal solution with objective zero is always attained (a).
Exact recovery is also obtained for randomly generated unfaithful point clouds (b). For randomly
generated shapes with eigenvalue multiplicity exact recovery can fail (c). In (d) successful exact
recovery is shown for an easier class of shapes with eigenvalue multiplicity.

matching (GM) problem is a pair of graphs GA = (VA, A) and GB = (VB , B). The
vertices of the graphs are assumed to be of equal cardinality n. The matrices A,B
are assumed to be symmetric and are chosen to reflect relevant information on the
graph. The goal of the exact graph matching problem is deciding whether there is
a relabeling of the vertices so that the graphs are identical. Mathematically this
amounts to deciding whether there is a permutation matrix X ∈ Πn such that

(15) XA = BX

In the special case where A,B are the adjacency matrices of the graphs, this
problem is called the graph isomorphism problem. The graph isomorphism problem
is in NP, but is not known to be either NP-complete or in P. We now prove the
equivalence of exact PM and exact GM:

proof of Theorem 1. The main observation needed for the proof is that if P,Q ∈
Rd×n satisfy PTP = A and QTQ = B, then the set of solutions of (15) is exactly the
projection onto the X coordinate of the set of solutions to the exact PM equation

(16) RP = QX

To see this note that if (16) holds then

XA = X(RP )TRP = X(QX)TQX = BX

On the other hand, if (15) holds then

PTP = XTQTQX

and so P and QX are two factorizations of the same matrix. Since factorization is
unique up to an orthogonal transformation there must be some R ∈ O(d) such that
(16) holds.

We now prove the theorem using this observation. We begin by showing a polyno-
mial reduction from exact GM to exact PM. Assume we are given two graphs defined
by the matrices A,B. We note that we can assume w.l.o.g. that A,B � 0 since for
any λ ∈ R, a permutation X satisfies (15) if and only if

X(A+ λIn) = (B + λIn)X

We can therefore factorize A,B to obtain P,Q, and the observation implies that the
graphs are isomorphic iff d(P,Q) = 0.

For the opposite reduction- assume we are given point clouds P,Q. We define
A = PTP and B = QTQ. Our observation implies that d(P,Q) = 0 if and only if
there is a solution to (15).
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Appendix A. Measurability. We show rδ is upper semi-continuous at almost
every W and hence Borel measurable. Assume by contradiction that there is some
sequence Wn −→ W such that rδ(Wn) −→ a > rδ(W ). We can then choose Rn ∈
Rδ(Wn) such that

(17) |Rn −R0(W )| −→ a

by moving to a subsequence we can assume that Rn converges to some R, using similar
reasoning as in the proof of Theorem 9 it can be shown that R ∈ Rδ(W ). It follows
that |R−R0(W )| ≤ rδ(W ) in contradiction to (17).
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