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Abstract

We discuss an invertible version of Furstenberg’s ‘Ergodic CP Shift Systems’.
We show that the regularity of these dynamical systems with respect to mag-
nification of measures, implies certain regularity with respect to translation of
measures.

1 Introduction

Ergodic CP Shift Systems (ECPS) were introduced by Furstenberg in [4] as a tool in his
proof of dimension conservation for homogenous fractals, and were also used by him in a
slightly different form in earlier work [2], 3], and by Hochman and Shmerkin in [5]. These
are ‘dynamical systems whose states represent measures on R, in which progression in
time corresponds to progressively increasing magnification of the measured'|. A general
discussion of ECPS and other ‘fractal dynamical systems’ can be found in [6].

We discuss the implications or the regularity of an invertible version of ECPS,
which we call Extended ECPS, with respect to ‘zooming in’ into measures, on the
behavior of typical measures when translated and normalized. We show that this
translation and normalization action is conservative whenever the Extended ECPS is
non-deterministic (to be defined), which is equivalent to saying that typical measures
are not Dirac measures. This result, and its proof, resembles Host’s proof [7] that a
‘non deterministic’ measure on [0, 1) invariant and ergodic under the xp map (‘zooming
in’) is conservative with respect to the action of translation by numbers whose base p
representation is finite.

We use this conservativity to show that ‘ergodic averages’ of the form

r

S0 ) f(tvyvin,n + 1)

Il
=)

n

IThis is a quote from the abstract of [4], with slight changes
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(where tfv is the measure v translated by = and then normalized) converge for typical
V.

This result can be compared to [9], where Medynets and Solomyak prove a second-
order ergodic theorem for the action of translation by R¢ on a different class of ‘fractal
dynamical systems’ (self-similar tiling systems).

Finally, we discuss a ‘pointwise analogue’ of the question of conservativity described
above, and show that if an Extended ECPS in not bilaterally deterministic (to be de-
fined), then the translation action on R is conservative with respect to typical measures
(which are points in the Extended ECPS).

We now begin Subsection [1.1]in which we present some terminology we use through-
out the paper. We then define Extended ECPS in Subsection [1.2}, which will enable us
to give a complete presentation of our main results in Subsection [I.3] At the end of
our discussion of the main results we will give the outline of the rest of the paper.
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List of Notation

M(R) Radon positive measures on R.

N Map normalizing elements of M(RR).

NM(R) Space of normalized measures.

Py[0, 1) Space of probability measures on [0, 1), and zero.

LS Space of legal sequences (i, in)nez-

X, X Spaces with points of the form (fi,, iy )n<o, (¥, (in)n<o)-

Mt MEP zooming in maps on Extended ECPS and ECPS.

Say T translation maps on X and X.

o, 0 Isomorphisms @ : LS — NM(R) x {0,1,...,p — 1}* and
6:X — X.

VM, fn Projections to the measure coordinate.

in Projection to the symbolic coordinate.

Tn The n-th digit in the standard representation of x.

to,tt Translation by = on R, T.

tr Translation and normalization map on NM(R).

o.0_ Left shift, right shift.

7 Sequence equal to j in all coordinates.

E; B Sequences (in)nez, (in)n<o With i, = j for all negative
enough n.

Ef Sequences (i, )nen With i, = j for all large enough n.

Dpn Partition of [0, 1) into p™ equal intervals.

Dpn, D Points of the form kp~", and the union of Djn.

G, G Points of the form (...,0,0,4,,...,i_1,4), and the union
of G,,.

i1y« oy in)pn the interval [3_7_, i;p~, >0 i;p~7 +p7").

1.1 Terminology

l

1. If (z,)nez is a sequence, we use x; as a shortened notation for the subsequence

('rjaxj—‘rl? s 7$l)~

2. For every space of the form XZ (or XY), o will denote the left-shift operator,
defined by

(0‘(1_:))” = Tnt1

and o_ will denote the right-shift operator on X% (or X%-) defined by
(0(Z))n = Tp1

3. All the spaces we discuss are seperable metric spaces, and we always take the
Borel o-algebra on these spaces, which we will denote by B.



4. Recall that if (X,B, ) is a measure space, (Y,.A) is a measurable space, and
p : X — Y is a measurable function, then the pushforward of u by p is the
measure v on Y defined by

[ v = [ 7o pla)dnta

We will denote this measure by pu or dpp.

If g : X — X is a non-negative measurable function, then the multiplication of
1 by g, is the measure v on X, defined by

[ f@iva) = [ 1) g(@yduto)

We denote this measure by gdpu.

5. If (X,B, u) is a probability space, A C B is a sub-c-algebra, and B € B, then
P, (B|A) is the function E, (15|A).

If Zy,..., Z4 are random variables into a measurable space (Y, .A), then we define
P, (B|z{) =P, (Blo(Z;'A,..., Z;' A))

If A, B € B, and p(A) > 0 then P,(B|A) is not a function, but rather the number

u(AnB)
P,(A|B) = Ha%

1.2 Extended ECPS

In the following we will define Extended ECPS. For an explanation of the relation
between them and Furstenberg’s ECPS, see [6] or Section [5|

The measures we will perform our ‘zooming in” on will be members of M(R) , the
space of (positive) Radon measures on R, with the weak topologyﬂ. The following
terminology will be helpful for the construction we will soon describe:

Definition 1.1. The restriction of v € M(R) to a Borel set A C R will be the measure
1adv € M(R)

Definition 1.2. We say that 11 and vy are similar , if there is an orientation preserving
homothetyﬂ p and A > 0 such that dvy = Adpvs.

We will discuss measures v which are normalized so that their restriction to [0,1) is
either zero or a probability measure. More specifically, we define a ‘normalizing map’
as follows

2This is a metrizable, seperable topology in which u,, — p iff for every f € C.(R), [ fdu, — [ fdp.
For more details see [g].
3In simpler words, p is a map of the form p(z) = ax + b where a > 0,b € R
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Definition 1.3. For every Radon measure v # 0 on R, we define
Y(v) =min{n € N: v[—(n—1),n) > 0}
For every v € M(R) we define

Ny = | T oeey v #0
0 ifv=20

We will only discuss measures in the space of normalized measures NM(R), which
is just the image of M(R) under N.

Now fix a p € N\ {1}.

The interval [0,1) can be divided into p intervals of the form [, “4). To simplify
n € N, [0,1) can be divided into p™ intervals of equal length, and for (iy,s,...,i,) €
{0,1,...,p—1}" we write

o , U |
[i1,09, .« ip)pn = | —, — 4+ —)

k=1

notation, for i € {0,1,...,p—1} we will write [i), instead of | ). Similarly, for any

We also define p; to be the orientation preserving homothety that takes [7), to [0,1),
ie.
pi(x) =pr —i
We now add ‘indexes’ to the space of normalized measures described above, and
consider the space NM(R) x {0,1,...,p— 1}%£. On this space we define the projection
maps
U(v, (ix)rez) = v

in(V, (i) kez) = in
We can now define our ‘zooming in’ map
Definition 1.4. The ‘zooming in’ map Mg™ : NM(R) x {0,1,...,p— 1}2 — NM(R) x
{0,1,...,p — 1}% will be the map

M™ (v, (ik)kez) = (Npi,v, o ((ix)kez))

Note that the restriction of Np;, v to [0,1) is a probability measure (or zero) which
is similar to the restriction of v to [i1),). More generally, 7o (M5**)" (v, (ix)rez) will be
a measure whose restriction to [0, 1) is a probability measure (or zero) which is similar
to the restriction of v to [i1,la, ..., n)pn.

We can now define an Extended ECPS

Definition 1.5. A probability distribution Q°* on (NM(R) x {0,1,...,p — 1}2,B) is
called an adapted distribution, or a CP distribution, if for every j € {0,1,...,p — 1}
and Q" almost every (v, (in)n<o),

Paer (i1 = 717, (inno) ) (0 (in)nez) = V1),



In other words, the probability of ‘zooming in’ to 1/|[j) is exactly v[j),.
p

Definition 1.6. A probability distribution Q°* on (NM(R) x {0,1,...,p— 1}2,B) is
called an Extended Ergodic CP Distribution (Extended ECPD) if it is invariant and
ergodic with respect to M;”, and it is adapted. If this holds,

(NM(R) x {0,1,...,p—1}7, M Q") is called an Extended ergodic CP system (Ez-
tended ECPS).

1.3 Main Results

As we discussed earlier, we are interested in the behavior of the measure component of
Extended ECPS under translations. We will now define this more precisely:

Definition 1.7. for every x € R, let t, : R — R be the map

te(y) =y —
t.v will be the the pushforward of v by t,. We also define tiv = Nt,v.

The maps {t%}.,cr define an action of R on NM(R), and Q*** induces a distribution
Q" on NM(R).

Definition 1.8. if G is a group which acts measurably on a Borel probability space
(X, B, u), where X is a seperable metric space, then

1. We say that the action of G on X 1is conservative with respect to u, if for every
A € B with u(A) > 0, there is a g € G\ {1}, such that u(ANgA) > 0.

2. We say that the action of G on X 1s strictly singular with respect to u, if for all
g€ G\{lg}, gn L p.

3. We say that the action of G on X 1is recurrent with respect to w, if for pu almost
every x, there is a sequence (gn)nen € G\ {1g}, such that gnx — x.

Conservativity implies recurrence, and if G is countable, then conservativity also
implies that the action of G on X isn’t strictly singular with respect to u. However,
recurrence, or failing to be strictly singular, does not necessarily imply conservativityﬂ

The conservativity of the Z action on NM(R) is determined by a property we call
determinism:

4 For example, the action of Z {ﬂ on (R,B, (0 + 1)) by addition is recurrent, is not strictly

singular, and yet is not conservative.



Definition 1.9. We say that a distribution Q" on NM(R) x {0,1,...,p — 1}% is
deterministic, if for Q" almost every (v, (i)iez),

~

Pae (i = i (9, (in)no) ) (0 (i0)iez) = 1

Otherwise we say that the distribution is non-deterministic.

We can now state our results. Though our interest is mainly in ECPD, our first
result holds also for distributions which are not adapted:

Theorem 1.10. Let Q°* be a distribution invariant and ergodic under Mg™. If Q"
is non-deterministic then the translation action of Z on NM(R) is conservative with
respect to DQ.

As conservativity implies recurrence, one can immediately conclude

Corollary 1.11. If Q% is a non-deterministic distribution invariant and ergodic under
Mpef”t, then for almost every v, there is a sequence k, € Z such that t;, v — v in the
weak topology.

When Q' is an ECPD (which satisfies an additional technical condition described
later), determinism of Q* implies that Q°** almost every p is supported on a single
point in [0, 1), and in particular the Z action on NM(R) is strictly singular with respect
to vQ®*, and so in the case of ECPD the converse of Theorem also holds.

While the Z action on NM(R) is strictly singular with respect to deterministic
ECPD, the action of

1
Z [—] ={kp™: k€Z,neN}
p

on NM(R) may be deterministic, and in fact for the Z [ﬂ action our results can be

phrased in the following simple form

Corollary 1.12. The action of Z [H on NM(R) is conservative with respect to an

ECPD (deterministic or non-determinstic) iff the Kalmagorov-Sinai entropy of the
ECPD 1is positive.

We use the conservativity from the former Theorem to obtain discrete and contin-
uous Pointwise Ergodic Theorems for Extended ECPD:

Theorem 1.13. If Q%! is a non-deterministic Extended ECPD, then for every f €
LY(NM(R), 2Q%") and vQ®" almost every v we have

=2
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where J is the o algebra invariant under a translation map defined in Section [4]
We also obtain a continuous version

Theorem 1.14. Let Q¢ be a non-deterministic Extended ECPD. For every bounded
measurable f : NM(R) — C define F/ = fol f(tiv)dv(z), then for bQ" almost every

v,

R T o _
i o /0 F(E0)dv(x) = Esgen(FF|T)(0)

Finally, we consider the question of conservativity of the action of R on R defined
by the translation maps {t,}.cr, with respect to Q™*-typical measures v € NM(R).
We think of this as a ‘pointwise analogue’ of the question of conservativity of the action
of R on NM(R) discussed earlier.

As before, we focus on the action of a countable subgroup 7Z [%] The ‘pointwise
conservativity’ of this action is determined by a property we call bilateral determin-
ism. This phrase was introduced by Weiss and Ornstein ([I1]) in the context of shift-
invariant, ergodic measures on {0,1,...,p — 1}%, to denote the situation in which the
‘past’ and ‘future’ of a point determine the ‘present’, as opposed to the notion of
determinism, where the ‘past’ alone determines the ‘present’. In our context:

Definition 1.15. We say that an Extended ECPD Q% is bilaterally deterministic, if
for every ky € N, and almost every (v, (i1)iez),

Pgest (il = i1|7, (in)n<os (%k)k2k0> (v, (0)iez)) =1

Theorem 1.16. Let Q% be an Extended ECPD. If Q% is bilaterally deterministic,

then for Q% almost every v, the Z [Il) action on R is strictly singular with respect to
V.

Otherwise, for Q' almost every v, the Z Lﬂ action on R is conservative with
respect to v.

Note that this implies that, while in the general case, the action of Z [ﬂ may be
neither conservative nor strictly singular with respect to some probability measure, in
the case of Extended ECPS, the Z [%] action will always be either strictly singular or

conservative, with respect to typical measures.

A canonical example of an Extended ECPS, is an Extended ECPS which arises
from (and is isomorphic to) a shift invariant ergodic measure on a symbolic space
(see [4],[3], and Subsection [5.3). In this case the concept of bilateral determinism
for the shift invariant measure and bilateral determinism for the induced Extended
ECPD coincide. One conclusion from this fact is that bilateral determinism of a shift-
invariant measure p is exactly the criterion that determines whether the (typical)
prediction measures arising from p will be conservative with respect to finite coordinate



changes. Another conclusion is that since Weiss and Ornstein proved that every shift-
invariant ergodic system is isomorphic to a bilaterally deterministic shift invariant
ergodic system, it follows that every Extended ECPD arising from a shift invariant
measure, is isomorphic to a bilaterally deterministic Extended ECPD, and thus the
class of bilaterally deterministic Extended ECPD is ‘large’.

We note that determinism implies bilateral determinism, and so ‘pointwise conser-
vativity” occurs ‘less often’ than conservativity. Indeed, while the Z action on NM(R)
will be conservative with respect to an Extended ECPD Q, unless Q°** almost every
w is trivial, in the sense that it is supported on a single point, we saw that we can give
a ‘large’ class of examples of Extended ECPD which are bilaterally deterministic. In
fact, we give an example of an Extended ECPD Q®*, which is supported on a family of

‘random Cantor measures’, and yet not only the action of Z % on R, but also the ac-

tion of all of R on R, is strictly singular with respect Q%' almost every p. Additionally,
this singularity is ‘strong’; in the sense that for every x # 0, t,u(supppu) = 0.

In Section [2| we describe additional ‘machinery’ needed for proving conservativity
and the Ergodic Theorems. We then prove conservativity in Section 3| and the ergodic
theorems in Section [4 Finally we discuss ‘pointwise conservativity’ in Section

2 ECPS Chains

In this Section we introduce dynamical systems we call ECPS Chains, which are (in
a sense we will describe soon) equivalent to Extended ECPS. We will then use this
equivalence for the proofs of conservativity and the Ergodic Theorems in Sections
and [ In this Section we only give an overview of how this equivalence is established,
and we leave the proofs of all Lemmas stated in this Section to Appendix [A]

Let P[0,1) € NM(RR) be the space of measures supported in [0, 1), which are either
0 or probability measures. Let R : NM(R) — Py[0,1) be the restriction to [0,1), i.e.
Ry = 1[071)1/.

For every € Py[0,1) and 0 <i < p — 1, we define

p' = RNpjpu

(note the resemblance to the definition of M**). Define LS C (Po[0,1) x A)?, the
space of ‘legal sequences’, to be

LS = {(pw, i) kez © Poer1 = MZ’CH}

For every n € Z we define the projection maps

A

i (ks U ) kez) = in

fin ((fs T ) kez) = Hn

(technically this is problematic since i, is also defined on NM(R) x {0,1,...,p — 1}Z,
but this should not cause any confusion).



Definition 2.1. A distribution Q<"*™ on LS is called adapted, if for every
je{0,1,...,p—1},

]PQchm‘n (%1 - ]|(/ln7 %n)n§0> ((Mna (Zn)nEZ» = Mo[j)p
We remark that if Q" is shift-invariant and adapted then for every k € Z,

]P)Qchain <:Zk+]_ = ]‘(,&n, %n)nﬁk) ((,una in)nEZ) = HE [])p

Additionally, for every k € Z, 1 > 0 and (j1,...,75) € {0,1,...,p — 1},

PQC’L‘”" <%k+1 = j17 <o 7/2k+l = jl‘(ﬂﬂ? gn)“Sk) ((:un7 in)nEZ) = ,Uk[jb e 7jl)pl (21)
(for a proof of this see [4])

Definition 2.2. A distribution Q"*" on LS is called an Ergodic CP chain distribution
(Chain ECPD) if Q' s adapted, and invariant and ergodic with respect to the shift
operator a. If this holds, (LS,B,o,Q"*") is called an Ergodic CP chain system
(Chain ECPS).

We now describe a technical condition which we will need to assume in order to get
the correspondence we are interested in.
For every j € {0,1,...,p — 1}, Deﬁneﬂ

E; = {(ix)kez : i = j for all negative enough k}

We say that a probability distribution Q**" on LS fulfills the Non-Constant Se-
quence Condition if Py[0,1) x Ey and Py[0,1) x E,_; have zero probability, and we
say that a probability distribution Q®* on NM(R) x {0, 1,...,p— 1}Z fulfills the Non-
Constant Sequence Condition if NM(R) x E; and NM(R) x E,_; have probability
Z€ero.

We note that if Q®* is non-deterministic, then it necessarily fulfills the Non-
Constant Sequence Condition , since if (w.l.0.g) NM(RR) x Ej is not a null set, then the
M invariance and ergodicity can be used to show that necessarily Q®™*(NM(R) x

{0}) =1 (where 0 is the point which is 0 in all its coordinates ), and in particular
for Q** almost every (v, i, )n<o, i1 = 0 and

Paut (i1 = 01(7, (i)uso) ) (0 (in)nez) =

which contradicts non-determinism.

5 A property holds for all ‘negative enough’ j if there is an ng € Z such that the property holds for
&11] < ng.
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In order to describe how one can pass from Chain ECPS to ECPS, we will need
to introduce some additional terminology. Let Z denote the set of intervals of the
form [a,b) (where b > a). Every interval I = [a,b) € Z can be divided into p disjoint
intervals in 7 with diameter b;f“. For 0 < j < p — 1 we define I’ to be the j — th

interval. (For example, for I = [0,1), IV = [j),).

Definition 2.3. 1. We say that (1,,)n<0 € T is compatible with (i,)n<0 € {0,1,...,p—
1}2 if for every n < 0, '
Iyt =TI

2. We say that (I,)n<o is well based if Iy = [0,1).

We note that for every sequence (iy),<o, there is a unique sequence (1,),<o which
is well based and compatible with (i, ),<o-
Let us denote the projection of F; onto the non-positive coordinates by E}, i.e.

E; = {(in)n<o : i, = j for all negative enough n}

We note that if (i,)n<0 & £y U E,_;, then the sequence of intervals (/,,)n<o well based
and compatible with (i,,),<o has U,<ol,, = R.

Let H be the group of orientation-preserving homotheties. We note that for every
I,J € Z, there is a unique p € H such that p(/) = J. We denote this homothety by
pi-

Now, for every point (fin,in)nez € (Po[0,1) x {0,1,...,p — 1})% we define a mea-
sure v € NM(R) which in fact depends only on the non-positive coordinates v =
V((fns in)n<o). This measure ‘preserves the information stored in the sequence (g, )n<o’-

For a given point (g, in)nez, we first pick the unique sequence (1,,)n,<o € Z which
is well based and compatible with (i,),<o , and then define for every n <0,

fin = Npﬁgﬂn
Lemma 2.4. For every k < n <0, there is a A = A(k) > 0 such that
k|, = Nk,

Moreover there is an ng such that for all k < ng, A(k) = 1.

The idea is that we first define fig to be jip. Now the fact that u, = po enables us
to pick a measure iy which is supported on I_y, is similar to p_1, and its restriction
to Iy = I", agrees with fig up to a multiplicative constant. We next define ji_, whose
restriction to I_; agrees with fi_; up to a multiplicative constant etc.

In the following example we show the first three steps of this construction.
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Example 2.5. Let puc be the ‘Cantor Measure’ on [0,1) defined by the property that
for every n > 0 and every iy, i, ..., i, € {0,1,2}",

. . 2 df foralll <j<mn,i;€{0,2}
pelin, - in)pn = { 0 otherwise

Then the Chain distribution (8. x (300 + 202))% is a shift invariant, ergodic, adapted
distribution.

Let (fin, in)nez be a ‘typical point’, i.e. a point with p, = pc and i, € {0,2} for
every n € Z. Let us examine the first stages of the construction in the case where
iop =0 and i_y = 2. Let (I,)n<0 be the sequence of intervals which is well based and
compatible with (iy)n<o-

Since (In)n<o s well based, Iy = [0,1) and fip = pc.

Since 1o =0, -1 =1[0,3) and

fu = Npy iy = pe + t_spc
Since iy =2, I_5=1[—6,3)] and
fiz = (o + 1t apc) +te(pe +topc)
[

For every n,m with n < m < ng (this is the ny from Lemma , we know that for
every Borel set A C R, fi,,(A) > fi;n(A). Therefore we can define our measure v by

v(A)= lim f[,(A)

n——oo
Define ® : LS — NM(R) x {0,1,...,p— 1}% by

(I)<<,un> in)?LGZ) = (V((Mm Z'n)n<0)v (in)nez)

The correspondence between distributions on NM(R) x {0,1, ..., p—1}% and Chain
Distributions is based on the following Lemmas.

Lemma 2.6. o = M;”CI)

Lemma 2.7. The restriction of ® to the (o-invariant) set

{(Mna in)nEZ € LS: (in)nGZ §Z E() U Ep—l}

is a measurable bijection onto (the Mg™ invariant set)

{1, (in)nez) = (in)nez & Eo U Ep 1}

12



Now, we note that if Q<" fulfills the Non-Constant Sequence Condition then so
does ®Q"* and similarly, if Q%" is adapted then so is ®Q"*". Furthermore, if
Qi fulfills the Non-Constant Sequence Condition then according to the last two
Lemmas (LS, B, o, Q°*") and (NM(R) x {0,1,...,p—1}%B, M, PQhein) are mea-
sure theoretically isomorphic. Similarly, if Q%' fulfills the Non-Constant Sequence
Condition , then ®~! is well defined on a set of full measure, and the process described
above can be reversed.

For our proofs later on, it will be useful to erase the non-positive coordinates in
the spaces we just discussed. Let X be the set of points of the form (fi, s )n<o €
(Po[0,1) x {0,1,...,p— 1})%- satisfying

1. For every n < 0, i1 = plr+t.
2. (in)n<o & By UE, ..

If Q°h" is a distribution which fulfills the Non-Constant Sequence Condition, then
the subset

{(H’na in)ﬂEZ € LS: (in)nEZ € EO U Ep—l}

is o-invariant and has full measure, and the restriction of the projection onto the
non-negative coordinates defined by

W*((Nmin)nez) = (Nna in)ngo

to this subset induces a distribution Q = 7_Q%*" on X. If Q°"*" is invariant and
ergodic, then @ is invariant and ergodic with respect to the right-shift operator which
we denote by o_ .

Similarly, let X be the set of points of the form (v, (in)n<o) € NM(R)x{0,1,...,p—
1}77% such that(in)n<o & Eg U E, ;.

If Q** is a distribution which fulfills the Non-Constant Sequence Condition, then
the subset

{W, (in)nez) = (in)nez & Eo U Ep_1}

is a M;Xt invariant subset of full measure, and the restriction of the projection onto
the non-negative coordinates 7_ defined by

T (¥, (in)nez) = (¥, (in)n<o)

to this subset induces a distribution Q = 7_Q%* on X.
For future reference we note that the map

O((ttny in)n<o) = (V((fns in)n<0); (in)n<o)

from X to X is a bijection (the proof is the same as the proof of Lemma and has
the property
7O =0 (2.2)

13



Additionally, the map (v, (in)n<o) = v from X to NM(R) satisfies
D= Fui (2.3)

The following diagram illustrates the relations between the spaces and distributions
described above.

(LS, Qchain) % (NM (R) x {0,...,p— 1}Z,Qext>

(X,Q) = (x.Q) |r

(NM(R), Q")

2.1 Translation Maps

In this section we define ‘translation maps’ on X and X.

We recall that we defined translation maps {¢;}rez on NM(R) in Subsection [L.3]
We now extend this definition by defining maps s, on {0,1,...,p — 1}%-, and then
define translation maps {T} }rez on X by

T (v, (in)n<o) = (trv, sk((in)n<o))

We will then define analogous ‘translation maps’ on X.

Fix some sequence (i,)n<o € Ey U E, ; . Then the sequence of intervals (I;,)n<o
which is compatible with (i,),<o has UI, = R, and therefore, for a given k € Z,
there is some ng < 0 such that [k, k + 1) C I,,. There is a (Jugs1, Jngs2s---5Jo0) €
{0,1,...,p— 1}" such that

[/f, k+ 1) = ( .. (([£30+1)jn0+2) . .)jo

We now define

‘ im 1 m<mng
Sk((Zn)ngo)m = { Jm if m > ng

which completes the definition of {T}}rez. We note that si is defined so that the
sequences (I,)n<o and (J,)n<o which are well based and compatible with (i,)n<o and
sk((in)n<o) respectively, have the property that for all negative enough n, J, = I,, — k.
In fact $x((in)n<o) is the unique sequence which has this property. We conclude our
discussion of translation maps on X with

Lemma 2.8. The maps {T}}rez define an action of Z on X.
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The group which will act on X is not Z but rather a different group we will now
describe. {0,1,...,p — 1}%- is a group with respect to the addition

((in)n<o + (Jn)n<0)m = @m + Jm mod p

and G = {(in)n<o : i, = 0 for all negative enough n} is a subgroup, which is the union
of the groups
Gm ={(in) : i, =0 for every n < m}

defined for all m < 0. Returning to the definition of sg, we see that sg((in)n<o)

and (i,)n<o agree for every n < ng, and therefore there is an a € Gy 41 such that

Sk((in)n<0) = (in)n<o + a. This fact gives the motivation for the following definition:
For every m < 0 and a € G,,, the map S, : X — X will be defined by

Sa((:“n; in)ngo) = (Vna jn)ngo

where
(Jn)nzo = (in)nzo +a
and for every n < m, v, = l,, and Vpy,, Vi1, - - . Vg are defined recursively by
— I — _ ,Jo
Upp = U™ 1 U1 = VI = 1y

In other words, (,)n<o is the unique sequence of measures with v,, = p, for all negative
enough n, and additionally (v, jn)n<o € X. )
The relation between the action of G on X and the action of Z on X is given by

Lemma 2.9. For every (fin,in)n<o € X, the following holds

1. For every k € Z, there is an a € G such that
0Sa((kny in)n<0) = TrO((fin; in)n<o) (2.4)

2. For every a € G, there is a k € Z such that Equation [2.4) holds.
3. Assume that for a € G, k € Z, Equation holds. Then a =0 iff k = 0.
This can be used to show

Lemma 2.10. The action of G on X is conservative with respect to a probability
distribution Q@ on X, iff the action of Z on X is conservative with respect to 6Q).

Also, the following holds

Lemma 2.11. If the action of Z on X is conservative with respect to Q, then the
action of Z on NM(R) is conservative with respect to Ty Q.

15



Finally, we introduce a notion of determinism for distributions on X. We say that
a distribution @ on X is deterministic, if for @ almost every (i, in)n<o,

Po (i = iol (ns in)a—1 ) (s in)nco) = 1

Otherwise we say that () is non-deterministic.
The conclusion of this Section is that

Proposition 2.12. let Q% be a non-deterministic M;zt mvariant and ergodic proba-
bility distribution. If the action of G on X is conservative with respect to m_®~1Q%,
then the action of Z on NM(R) is conservative with respect to vQ®™.

Therefore, for the proof of Theorem it is sufficient to prove

Proposition 2.13. Let ) be a right-shift invariant and ergodic distribution on X.
Then the action of G on X is conservative with respect to Q iff QQ is non-deterministic.

The proof of Proposition is the objective of the next Section. Proposition [2.12]
follows immediately from our discussion up to now, as we shall now see. Let Q% be a
non-deterministic M;Xt invariant and ergodic probability distribution. Then in partic-
ular Q°** fulfills the Non-Constant Sequence Condition , and therefore the distribution
7_®7 Q%" on X is well defined. if the action of G on X is conservative with respect to
7_®71Q%*, then it follows from Lemma - that the action of Z on X is conservative

with respect to
QW,(D_lQeXt _EqR3 7}7@(1)_1@6’“ _ ,ﬁ_i@ext

Which, by Lemma implies that the action of Z on NM(R) is conservative with

respect to
ﬁ_Mﬁ__Qext __Eq[2.3 ﬁQeXt

3 Conservativity

In this Section we prove Proposition [2.13] which will conclude the proof of Theo-
rem [1.10} as we discussed in the previous Section. We end the Section with a discussion
of conservativity for deterministic distributions.

This proof is an adaptation of Host’s proof in [7] that if x is invariant and ergodic
with respect to multiplication by p, then the actionof D = {kp™: ne N, 0 <k < p"}
on [0, 1) is conservative with respect to p, iff the Kalmagorov-Sinai entropy of p is larger
than zero.

3.1 Conservativity for Increasing Finite Operator Groups

We begin with a general discussion of conservativity for increasing finite operator
groups.
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Let (Y, B, P) be a probability space, and for any n > 0, let G,, be finite groups of
measurable maps from Y to Y, such that G,, C G,,41.

Additionally, assume that for every n, there is a measurable finite partition v =
{R™Y},<n, such that for every Id # T € G, and i < N,,, T(R"™) N R"™ = (.

Define measures P, by [ f(y)dP.(y) = > rcq, | f(Ty)dP(y). Clearly for any A €
B, P(A) < Py(A) < Pi(A)... and therefore in particular we have Radon-Nikodym

derivatives ¢, = 4 and ¢, is non-increasing P almost everywhere. Additionally

Py
0<¢, <1
Finally, define A,, to be the o algebra invariant under all T' € G,,.

Lemma 3.1. 1. P s strictly singular under G iff for every n, ¢, = 1 P almost
everywhere.

2. P is conservative under G iff ¢, — 0 P a.e.

3. Ep(flA)Y) = Dreq, f(Ty)on(Ty), in particular for almost every y € Rl(n),
Only) = Pp(B"|A0)(9).

Proof. 1. Assume A = {y € Y : Vn,¢,(y) = 1} has P(A) = 1. Then for every
n €N,

/ 14dP = / 1bndP, = / 14dP, = / 14dP + Z / 14dT P

TeG,\{Id}

and therefore for every T' € G, \ {Id}, TP(A) = 0.

Now assume that P is strictly singular under G. Then for every T' € G \ {Id},
there is a Borel set Ar with P(Ar) =1 and TP(Ar) = 0. The intersection A of
all such sets had P(A) = 1 and TP(A) = 0 for every T € G \ {Id}. We claim
that for every n € N ¢,, = 14 and therefore ¢,, = 1 P almost everywhere, since
for every f € L*(P) and every n € N,

/1AfdPn:/1AfdP:/fdP

2. Note that for every n, ¢, > 0 P a.e. Define K = {x : Vn, ¢,(x) > 0},
then P(K) =1 and 1xdP, = ¢, 'dP.

Suppose that ¢, doesn’t tend to zero P a.e., then there exists a C' C K with
P(C) > 0, and € > 0, such that for every n, ¢, > € on C. Therefore for every n

P(C) > /C(/ﬁ;ldP:Pn(C) :/ Z lo(Tz)dP(z)

€
TeGn

The sequence ) ;. 1c(Tw) is therefore a.e. finite, and since it only accepts
integer values, it follows easily that there is an n and B C C of positive measure
s.t. 1¢(Tx) =0 for every T € G\ G, and = € B.
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For this n, there is an ¢ < N,, such that A = BN R,g") has positive measure, and
since for every T € G, \ {1¢}, Rz(n) N TRZ(") = (), we have VI # Id, ANTA = (),

and so the action of GG isn’t conservative with respect to P.

Conversely, suppose there is a B of positive measure with
VT # 1d, P(BNTB)=0 (3.1)

Since P(K) =1, B= BN K has positive measure while Eq . still holds when
we replace B by B. The set A= B \ Upz IdTB is then a set of positive measure
contained in K with

VT £ Id ANTA=(

For all n,
1> P(Uree,TA) = > P(TA) = / o-1dP
TeG,
and therefore necessarily for P almost every x, ¢, (z) /4 0.

3. Fy = Y req, f(Ty)pn(Ty) is clearly invariant under any T' € G, and therefore
Fy e L'(A,). Additionally, for any A € A,

/ La(y) Fy (9)dP(y) = / 14(w) S F(T9)6(Ty)dP(y) =

TeGy

[ 3 u@nsaponnirw) = [ 1) 0o 0w

TeGn

_ / 1a(y)f (4)dP(y) (3.2)

which proves that indeed E(f|.A,) = Fy. (Equation [3| can also be used to show
that F is well defined, i.e. that if f =g P a.e. then Fy = F, P a..)
[

3.2 Proof of Proposition 2.13

We now use the general discussion from the previous Subsection, for the action of the
increasing groups G, on X defined in Subsection (Note that increasing here is in
the sense G_; C G_5 C ...). Forevery b= (...,0,0,b,,b,11,...,b0) € G,, we define

~

Ry = {(i)i<0 : n,y--- jo((iz)zgo) =by,...,bo}

and 7" = {Ry}seq, This is a finite partition of X, and for every b € G,, and a €

Gn \ {0},
S,RyNRy=10
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and therefore according to Lemma |3.1] E for every n < 0 and @ almost every (u,4;)i<o,
On = ﬁ is given by
acGn a

G (11, i0)1<0) = Polin, - yi0 = tns - v iolAn) (1, 41)i1<0)

where A, is the o-algebra invariant under GG,,. We note that A, = o_~(I"+DB and
therefore we may also write

¢'ﬂ<(:ul7 il)lSO) - PQ <£n7 cee 7%0 - in; ce ;i0|(/ll, le)l<n> ((,ul, il)lSO)
0
=[P (ij = djlin, -, 051, (ﬂz,il)kn) (1, 2)1<0)
j=n
) (G i)e<o)

(3.3)
=) HPQ< —Za| Mlall)lq ,ul,iz)zgo

(%) H oo 0 a‘f‘((#l, i1)1<0)
j=n

Where (x) follows from the fact that if ji,_1 = g1 and (in,...,%0) = (in, ..., i)
then necessarily .
fln = Hp'y = Py Pt = /L;nJr = Hn+1, etc.

and (xx) follows from the fact that ) is invariant under the right shift.
According to the Ergodic Theorem, for almost every (u;,1%;);<o,

In|
1 1
— lim log ¢ (pu,71)1<o = — lim |— Z log ¢ 0 & (11, i) 1<0 = / —log ¢od@

n=s-c0 |n|
7=0

and so one of two options hold

— [log ¢pd@ = 0 and therefore since we already know that 0 < ¢y < 1 almost
everywhere, necessarily ¢y = 1 almost everywhere, and so () is deterministic
by definition. Equation implies that for every n < 0, ¢, = 1 @) almost
everywhere, and therefore the action of G is strictly singular with respect to )

(by Lemma [3.1]).

2. —lim, oo ﬁ log ¢ (115, %5) j<0 = — [ log $od@ > 0, and therefore the set of points
(1, 41)1<o for which ¢, ((14,7;)1<0) — 0 is necessarily a null set, and so @ isn’t
deterministic, and the action of GG is conservative with respect to Q).

This concludes the proof of Proposition O
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3.3 Deterministic Distributions

Let us assume that Q% is a ]\/[][’fXt invariant and ergodic distribution, which is de-
terministic and fulfills the Non-Constant Sequence Condition . Then according to
Proposition the action of G on X isn’t conservative with respect to m_®~1Q",
and therefore according to Lemma the action of Z on X isn’t conservative with
respect to Or_® Q™" = 7_Q™*. This however does not automatically imply that the
action of Z on NM(R) isn’t conservative with respect to 7Q*. Indeed, when Q*
isn’t adapted this is not necessarily the case, as the following example shows.

Example 3.2. Assume p > 2, and pick some 2 < i <p —1. Denote the point (1n)nez
with 1, =1 for everyn € Z, by i . Then

M;™(Leb, i) = (Leb, i)

and therefore the distribution (5( Leb,7) 1S deterministic, invariant, ergodic, not adapted,
and fulfills the Non-Constant Sequence Condition . Since for every x € R, t;Leb = Leb
it follows that the Z action on NM(R) is conservative with respect to U1, 7)-

If Q°* is adapted, then Q%' almost every measure is supported on a single point
in [0, 1), and so the set

A ={v: vissupported in [0,1)}
has full measure. For every k € Z \ {0},
tANA=0

and therefore the Z action on NM(R) isn’t conservative with respect to 2Q%*.

3.4 Sketch of Proof of Corollary [1.12

Let Q%' be an Extended ECPD. If Q* is non-deterministic, then Q% is conservative

with respect to the Z action on NM(R), and therefore also with respect to the Z [%]
action on NM(R). In this case the Kalmagorov-Sinai entropy is positive, since for
Q = m07'Q™, — [log¢odQ as defined above is positive, and can be seen to be
the conditional entropy of (X,o_, Q) with respect to the sub o-algebra o~'B. Thus,
the entropy of Q®*, which is necessarily larger than the conditional entropy of @, is
positive.

If Q°* is deterministic, then a.e. v is a dirac measure supported on a point in
[0,1), and thus typical points are of the form (g, (Zn)nen), Where > _z,p™" = .
The map L defined by L(d., (2,)nen) = @ is a factor map from the Extended ECPS
to ([0,1), M, LQ™"), and (in this case) the factor has the same entropy as the original
Extended ECPS. By Host, the action of D on [0, 1) is conservative iff LQ®" has positive
entropy, and as we discuss in Remark , for measures supported on [0, 1) the action
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of D on [0,1) (by addition mod 1) is conservative iff the action of Z [ﬂ on R is

conservative. Finally, the action of Z [ﬂ on R is conservative with respect to LQ™ iff

the action of Z [%] on NM(R) is conservative with respect to Q**. [

4 Ergodic Theorems

To prove Ergodic theorems for the translation maps described in Section [3, we will
use Hurewicz’s Ergodic Theorem and the Chacon-Ornstein Lemma for non-singular
transformations. We give a brief summary of what we will need from the theory of
non-singular transformations, for reference and more details see [1].

4.1 Non-Singular Transformations

Let (X, B, 1) be a probability Spaceﬂ and T : X — X a measurable invertible operator.
Definition 4.1. We say that T is non-singular if T'u ~ p.

We note that T is non-singular iff 7-! is non-singular. Note also that it is possible
that T and p are not mutually singular, and yet T is still not non-singular. A non
singular-transformation T induces an isometry Ur : L' (1) — L*(u) throughf|

B ATt
=~
We say that T is conservative if the Z action defined by {T" : n € Z} is conservative

in the sense of Definition [[.8
We can now state Hurewicz’s Ergodic Theorem:

Ur(f) foTl

Theorem 4.2 (Hurewicz). Let (X,B, u) be a probability space, and T' a conservative,
non-singular transformation. Then for every f,p € L'(u) with p > 0

ZZ:O Uzk“f(x)
ZZ:O Ufip(x)

for a.e. x € X, where du, = pdp and J is the o-algebra invariant under T'.

f
SE, (L
Hp(p|°H)

We will also use the Chacon-Ornstein Lemma
Lemma 4.3 (Chacon-Ornstein). For every f,p € L*(u) with p > 0
h f (:C) =0
> ko Urp(2)

for a.e. x € X.

SFor the purpose of the discussion in this Subsection only, X will be some general space, and not
the space we defined earlier.
"In Aaronson’s notation in [I] this is 71
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A simple calculation show that U} is given by

dTtp dT 1y
T)...
A R

dTtu
dp

Urf = (foT")( oT"™) (4.1)

4.2 Proof of Ergodic Theorems

We now prove the Ergodic Theorems described in Subsection [1.3] Fix some non-
deterministic Extended ECPD Q®*. Q°* induces a distribution @ = 7#_Q%* on X,
and a distribution Q = 67'Q on X.

The translation maps {7}, }nez are not necessarily non-singular with respect to Q .
To see this, we first note that the adaptedness of Q implies that Q and Q give the sets

? = {(V, ('Ln)n§0> - 7é 0}

Y = {(Nm in)nSO Do # O}

full measure. In Example [2.5| we described the chain distribution (8, % (380 + 302))”
which induces a non-deterministic ECPD which gives the set A = {(v, (in)n<0) :
v[1,2) = 0} full measure while

TLAC (V)

and so T1Q L Q. However, the set Y and the map T} induce a map T : Y — Y which
is non-singular. To define T, we first define

7(v) =min{n € N: T, (v, (in)n<o) € Y}

Lemma 4.4. For almost every v, 7(v) < oo.

Proof. Define
glv)=max{n e€Z: vin,n+1) >0}

Since Y has full measure it is sufficient to show that,

QU (w, (in)n<o) : T(rv) =00} N Y/) = ﬁM@({V : v[0,1) >0 and 7(v) = c0}) =

TuQ({v: g(v) =0}) =0

Indeed, this must be the case as otherwise, since we know the action of Z on NM(R)
is conservative with respect to my@, there is some k € Z \ {0} with

Qv+ gv) =0} Nti{r: g(v) =0}) >0

but t;{v: ¢g(v) =0} ={v: g(v) = —k} and therefore the intersection above is empty,
which gives a contradiction. O]
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We now define
T(”? (in)nSO) = TT(,,)(I/, (in)nSO)

Similarly, we define
7_(v) =min{n € N: T_,(v, (in)n<o) €Y}

For almost every v, 7_(v) > —oo and it can be verified that the inverse of T" is given
by
T (v, (in)nzo) = Tor_) (¥, (in)n<o)

At the end of this section we will prove

Lemma 4.5. T is a non-singular transformation. Moreover

dT1Q
o= -
dQ

Since {T,, : n € Z} is conservative, also T is conservative. And thus we can use

the Hurewicz Ergodic Theorem. To do so we will first calculate UL f.
Define 7,,(v) recursively by 7 = 7 and

(¥, (in)n<o) = V[r(v), 7(v) + 1)

(V) = Tua (V) +7(85,_ )V)

Tnfl(
Note that if £ € N and k < 7,(v), then v[k, &k + 1) > 0 iff there is a 1 < j < n such

that & = 7;(v). To keep notation uncluttered, we write 7,, instead of 7,,(v). Note that

_ V[Tos1s Tag1 + 1)
U[Tp, Tn + 1)

0 0 T, (in)nzo) = plt5,) = W[ (th, 1), 7(t5,v) + 1)

and so Eq[4.] gives us
n—1

Urf(v, (ir)k<o) = f o T"(v, (ir)k<o) - v[T1, 71 + 1) H

J=1

V|71, Tjpr + 1)
V[Tj77—j + 1)

= foT"(v, (ix)k<0) - V[Tn, Tn + 1)

Now, applying the Hurewicz Theorem for p = 1 we get for a.e. (v, (in)n<o),

n—1
A0 (i)os0) = 55 3 O TH0 (in)nso) (0 o) = Eg(ID0: in)uso
»In) 3T,
Define -
AL (1)) = S5 3 O Ty i )os) 175 + 1)
) =0



which is well defined whenever m > 7. If 7, < m < 7,41 then Aﬁl = fl{; and so for
a.e. (V, (in)ngo),

AL (¥, (in)nzo0) = Eg(fID) (v, (in)nzo)

Theorem is just the special case in which f(v, (in)n<o0) = f(v).
Let f = f(v) be a bounded measurable function, for a < b € R define

A (f)w) = ﬁ / F(tw)dv(x)

We will show that Af converges a.e. (Theorem. We define I/ = A} and note that
it too is bounded and measurable. However, if f = ¢ Q a.e., it is not necessarily true
that F/ = F9 Q a.e. To see this we return to the non-deterministic ECPD induced by
the chain distribution (8, x (380 + 302))% from Example , and note that the set

B=A{v: Ve>0, v[0¢), v(l —¢€€) >0}

has full measure, but for every z € R\ Z, B+ x N B is a null set. Thus we can pick
f=1and g = flp, and obtain F/ =1 and F9 = 0.
Nonetheless, we can still apply the ergodic theorem we just proved to F/, we obtain

AV (H) = AF (v) = Eg(F/ 1) (v)

for a.e. v. To extend this to any z € R, note that if we take f = p = 1 in the
Chacon-Ornstein Lemma, we obtain

U[Tp, Tn + 1)
v[0,7, + 1)

and therefore

JCAED I

v[0, [x1)

using this and the fact that for any 0 < x < N,

A1) = e 5w + S AN ()

it is not difficult to see that A% converges to the same limit as A} does.

Proof of Lemmal[{.5. Notation in this proof: We denote the multiplication of f and g
by fg and their composition by f o g. Recall that the pushforward of a measure P by
f we will denote by fP or df P, while the multiplication of P by f will be fdP.
It is sufficient to show that
ar-'qQ, .
50 in)eso) = VIr (), 70) + 1)
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and then since

Q 2 > 0 it follows that T~ 10 ~ Q.

As in the proof of conservativity, in our calculation of we use the ‘translation

dr—'Q

dQ
maps’ {S, }aeq on X. This can be done since the set of full measure Y can be divided
into a countable number of disjoint sets

Yo ={(v, (in)nco) : T (v, (in)n<o) = 60 Sa 0 07 (v, (in)n<o) }

Fix some a € G, and pick an n < 0 so that a € G,. We recall that, for Q, =
> bea, SbQ and ¢, = CZQ—Qn, ¢y, is given by

~

O (i1, 30)1<0) =" PG (i, . 20 = iy - s 0| (fir, 1) 1<n) (i1, i2)1<0)

__Eq[2] fon—1 [ty g1y - - - ,io)p\n|+1
Since @, is S, invariant,
ds,
@ 05,
dQn

Additionally, note that for all (u,4;)i<0 € Y, én((u,1)i1<0) > 0, and therefore
1ydS,Q < 1ydQ, ~ 1ydQ = dQ

and so 45,0 dQ 6,08
a -1 _ PnCO—q
i, ‘a0, =",

This can be used to show that for every n < 0 and a € G,,

lydS.Q) = dQ (4.2)

1A ¢poltoT -
]‘T_lffadT 1Q = 1T_1?“Wd62 (43)
We leave this computation to the end of the proof. We now obtain dT1Q through
- . o0 oT -
Ar'Q = 10770 =Y 14y W—jd@ -

a€G ’ a€G © fnod
¢n o 9_1 T ~
PR

We now compute ¢Z)°99 L Let (v, (i1)i<0) = 0((1u,91)1<0) be some point in Y. and

let (1;)i<o be the sequence of intervals which is well based and compatible with (4;);<o.
Then
vo,1) 1

V(1) a v(ln-1)

¢TL © 0_1<V7 (il)ZSO) = Mn—l[ina R 7i0)p\"\+1 -
and (for 7 = 7(v))

¢ o 971 o T( (Zl)l<0) t* (I 11 — 7') - V[V7—(7[71—1—|_1>1>
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: : 15, .
Which shows that indeed dq;lQQ(u, (in)n<o) = v[T(v), (V) + 1).

We now go back to proving Equation . For every f € Ll(Q) we have

/1:,,_1?&-de—1@:/1% (foT™HdQ =
/1{/&-(]00005@001)d€Q:/(13~,a06)-(fo@oSa)dQ:
/(1{,@ 0008 _,)-(fo8)dS.Q —(*) /(1% 000S_,) (fob)-1ydS,Q

nOS—a
2 [(15, 0005 (F00) - (“2 a0
n0S_ 007t -
:/(157a0905—a00_1)'f'(%T)dcg

noftoT .
— (%) /1T1Ya f- (%T)dQ

Equality (x) follows from the fact that
lg 0005 4= 1541y, =lp1pay, (4.4)

and

and therefore
(15, 00085 ,) 1y =13 0o S,

Equality (xx) follows from the fact that
ly 0loS_ g0 o=t =Falld Lyipay, © 0! = Lpoay,
and from the fact that if (v, (i;);<0) € T~'Y, then

07! o T((v, (it)i<0)) = S—a 0 0 ((v, (it)1<0))

]

5 Pointwise Conservativity and Strict Singularity

Our aims in this Section is to prove Theorem which shows that the condition for
conservativity of the action of Z [%] on R with respect to typical measures is bilateral

determinism, to discuss the connection between bilateral determinism as defined here
and bilateral determinism as defined by Ornstein and Weiss for shift-invariant measures,
in the case of an Extended ECPD induced by a shift invariant ergodic measure, and
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finally to discuss and present the example described in Subsection [1.3| of an Extended
ECPD with the property that for almost every v, the action of R on R is strictly
singular with respect to v.

We begin this Section by defining ECPS (Ergodic Conditional Probability Systems),
which are the originaff| systems defined by Furstenberg in [4]. We will then discuss
the relationship between ECPS and Extended ECPS, and show how the statements
described in the previous paragraph can be proved via proving analogous claims for
ECPS. We will then discuss these claims on ECPS.

5.1 ECPS
Fix p € N\ {1}. Define M, : [0,1) — [0,1) by
M,(z) =pr modp
We also define
ES | = {(in)nen : for all large enough n, i, =p — 1}

Every number z € [0,1) has a unique representation x = ) _,p~" such that the
sequence (T, )nen is not in E;f_l. We call this representation the standard representation
of x in base p .

Consider the space Py[0,1) x [0,1). Define the projection i on Py[0,1) x [0,1) by
i, x) = p, and let &,(u, x) be the n-th coordinate in the standard representation of
z. Now define a map MS? : Pg[0,1) x [0,1) — Po[0,1) x [0,1) by

MpCP(:ua iIZ’) = (qul?l’ Mpl'l)
A distribution P on P[0, 1) x [0, 1) is called adapted, if for every j € {0,1,...,p— 1},
for P almost every (u,x),
Pp (21 = jli) (u @) = plh)y
If P is also MpCP invariant, this property implies that for every (ji,7J2,...,7,) in
{0,1,...,p— 1}, for P almost every (u,x),
]PP (.f‘l, . ,j}n = jl; . ,jn‘ﬂ) (/L, .T) = /,L[jl, c. 7,jn)p" (51)

Note that the set {(u,z) : &1(w,2),...,Tn(p, ) = J1,...,7n} is exactly the set
Po[0,1) X [j1,.-.,Jn)pn and therefore Equation implies that the conditional mea-
sures of P with respect to the o algebra generated by i at the point (u, z), are exactly
. In other words, for every f € L'(P),

[ [t sdu@ar = [ sn)apip.a)

8The definition we give here is not exactly the same is Furstenberg’s, but the definitions conincide,
with the exception of the distribution d(s, 1) which is an ECPD in Furstenberg’s definitions, while in
our definition (d1,1) is not in our space.
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In particular, P gives a set A C Py[0,1) x [0, 1) zero mass, iff for P almost every pu, u
gives the set A(u) = {x €[0,1): (u,z) € A} zero mass. Thus P gives the set

{(p, ) = for all n, plzy,...,2,)pm > 0}

full measure.

Definition 5.1. A distribution P on Py[0,1) x [0,1) is called an Ergodic Conditional
Probability Distribution (ECPD), if it is an adapted distribution, which is invariant
and ergodic with respect to pr.

If P is an ECPD we call (Py[0,1) x [0,1),B, P, MS") an Ergodic Conditional Prob-
ability System (ECPS).

Finally,

Definition 5.2. We say that an ECPD P is bilaterally deterministic, if for P almost
every (p,x), and every 0 < j <p—1,

Pp (21 = 1|, 0Zo0 (2)) (1, ) = By (61 = 1| N5Zs 0(27)) (4, 7)) = 1

(Here also we use an abuse of notation, and think of z,, also as maps on [0, 1), and
not only as maps on Py[0,1) x [0, 1)).

The natural invertible extension of an ECPS can be realized as a Chain ECPS (as
we do not need this, we do not discuss this in detail). On the other hand, consider the

map W : (LS\ {(u, in)iez : (in((pu, )icz))ner € B 1}) = P[0, 1) x [0, 1) defined by
W ( (a2 i)iez) MmZ%P

Then Vo = M{PW. If Q" is a Chain ECPD which satisfies the Non-Constant Se-
quence Condition, then (using the Shift invariance of Q<"*™) for almost every (1, i)z,

(in((pt1,31)12) Jnen € B

and therefore Q<" is supported on the domain of ¥, and so ¥Q**™ is well defined,

and is an ECPD. Thus there is a one-to-one correspondence between ECPD and Chain-
ECPD.
The interval [0, 1) is a group with the addition operation

r+ry=x+y modp

accordingly, we define 2 : [0,1) — [0,1) by t%(y) = y —r 2. This defines an action of
subgroups G C [0,1) on [0,1) via the maps {{!}.cc. Recall that we defined D to be
the group

D={kp™: neN0<k<p'—1}

In Subsection [5.2 we will show
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Lemma 5.3. If P is a bilaterally deterministic ECPD, then for P almost every u, the
action of D on [0,1) is strictly singular with respect to p. Otherwise, for P almost
every p, the action of D on [0, 1) is conservative with respect to .

We will additionally give an example of an ECPD P4, such that for Py, almost
every measure u, the action of [0,1) on [0, 1) is strictly singular with respect to p, and
moreover, for all z # 0, ¢%u(suppu) = 0.

Lemma [5.3| can be used to show that Theorem holds, and similarly the Ex-
tended ECPS which arises as a realization of the natural invertible extension of the
ECPS (Po[0,1) x [0,1),B, M, Pyng), where Pyipng is the ECPD described above, has
the property that for almost every v, the action of R on R is strictly singular with
respect to v, and moreover, for all x # 0, t,v(suppr) = 0.

We do not give a full proof of how to pass from our results on translations on T, to
the results regarding translations on R, but we mention that such a proof is based on

the following observations

Remark 5.4. 1. For every AC[0,1) and a € [0, 1),
(A+a+7Z)N0,1)=A+r

This can be used to show, that if p is supported in [0,1), then the action of some
group G C T (by addition in T) is conservative/strictly singular with respect to u
iff the action of G + Z (by addition in R) on R is conservative/strictly singular

with respect to p. Note that D +7Z = 7 [H and [0,1) + Z = R.
2. Let A C R be a Borel set, p € M(R), x € R, and let p : R — R be of the form
p(x) =p"x +0b, then
pr(pA+p*z) = (A + )
This can be used to show that if G C R is invariant under multiplication by p
(and this is indeed the case for both Z [ ] and R ), then if the action of G on R

1

p
is conservative/strictly singular with respect to u, then it will also be conserva-
tive/strictly singular with respect to pp.

We now explain how this can be used to show that if Q% is not a bilaterally
deterministic distribution, then the action of Z [%] on R is conservative with respect

to Q% almost every v.

Assume Q% is not bilaterally deterministic. Then (NM(R) x {0,1,...,p — 1}2,
B, M;Xt, Q™) is measure theoretically isomorphic to (LS, B, o, Q%" = &~1Q°)  and
(Po[0,1) x [0,1),B, MS”, P = wQ“*") is a factor of both isomorphic systems, and
the fact that Q%' isn’t bilaterally deterministic, implies that P is not bilaterally de-
terministic either. Therefore by Lemma [5.3] for typical (y,z), the action of D on
[0,1) is conservative with respect to p, and by the first remark above, this implies

that the action of D +Z = 7Z [ﬂ on R is conservative with repsect to typical p. This
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implies that for typical (p,%)ez, the action of Z [ﬂ on R is conservative with re-

spect to ug, and therefore also with respect to all u, by shift invariance. Now typical
(v, (in)nez) € NM(R) x {0,1,...,p— 1}% are of the form ®((y,1;)1ez), where for every

n, conservativity with respect to p, holds. Using the second remark, the action of
Z [ﬂ on R will also be conservative with respect to fi,,, which are normalized version

of measures of the form ppu,,, and therefore also with respect to v = lim fi,,.

5.2 Conservativity and Strict Singularity for ECPS

Proof of Lemma Let P be an ECPD. For every n € N define Dyn = {kp™ : 0 <
k < p"—1}. This is an increasing sequence of finite groups, whose union is the group
D defined in the previous section.

We also define for every n € N a partition Dy» = {R,}aeco,1,... p—13» of [0,1) where

R, ={z: 2} =a}

note that for all a,b € {0,1,...,p— 1}" with b # 0, t, R, N R, = 0.
Now, for every (i, z), and every n € N define the functions

_ dp
d Z(IEDpn ta/l/

For every pu, and for p almost every z, ¢,(u,z), is a non-increasing sequence, and
therefore we can also define

On(pt, )

¢ = lim ¢,
n—oo
Note that for every n, the o-algebra invariant under the action of D, is exactly the o-

algebra generated by Z,,, 41, ... We can now apply Lemma (in fact this is exactly
the context in which this lemma was originally formulated by Host) to deduce that

¢n((:u7x)) = ]P),u (jjrll = 937@211) (:uv ZU)

and additionally, the action of D on p is strictly singular iff for all n € N, ¢,,(p,-) = 1
w almost everywhere (which holds iff ¢(u,-) = 1 p almost everywhere, as ¢, is non-
increasing), and is conservative iff ¢(u,-) = 0 p almost everywhere.

For n, k > 0, define

On((n, ) =B, (37 = a7 |371Y) (v)

By the Martingale Theorem, for P almost every (u,x),
On((p, ) = lim ¢}, ((u, 7))
Note that
O o M (1, 7)) = (™, Myx)) = Pyes (27 = 23 |2717) (M)
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1 (san+k _ ntk+1 L ~n+k+1 _ _nt+k+1
_ (@ = ) @ = m, 3y =T )
- ~ntk _ _ntk+ly A ~n+k+1 _ _nt+k+1
pr (xn+1 = Tpy2 ) M(xl = X1, Ty = Tpy2 )
~n+k+1 _  ntk+1 ~n+k+1 _ _nt+k+1
_ p(Ey = I ) N(%H = Tp42 )
~n+k+1 _  n+k+1 A n+k+1 _ nt+k+1
wdnis " = Lpt2 ) 1(Z1 = @1, 2575 = Lpt2 )

= ¢£+1(N7I)[Pu (il = Il@ﬁfﬁ“) (x)]_l
Taking the limit & — oo we see that for almost every (u, x),
P 0 My (11, %) = P (1, 2) [Pu(@1 = 21]2752)] (5.2)

and if we now take n to infinity, we get, for P almost every (u, ),

¢ o M" (1, 2) = ¢, ) [P (81 = 21| M{Zg (&) ()] (5.3)

This implies that ¢ o MI?P > ¢ P almost everywhere, and in a measure preserving
ergodic system, this implies that ¢ is an Mpc P invariant function, and therefore there
is some 0 < 8 < 1 such that ¢ = 8 P almost everywhere. Equation |5.3| implies that
for P almost every (u, z),

B =By (&1 = 21| MLy (7)) ()]

Assume 3 > 0, then P, (21 = 21| NyZ; 0(25°)) () = 1 P almost everywhere, which
means that P is a bilaterally deterministic ECPD. For every n > 2, the o-algebra
generated by 2° contains N9° ;0 (22°), and therefore for P almost every (u, ),

P (21 = a|ay) (x) = 1

In particular
G1(p, x) =Py (1 = 21[257) () = 1

almost everywhere, and according to Equation [5.2]

¢n+1 - (bn o Mp

almost everywhere, and the last two equations imply that for every n, ¢, = 1 almost
everywhere, and so # = 1. Thus we have shown that either g = 0, and so the D action
is conservative with respect to typical measures, or P is a bilaterally deterministic
ECPD and # = 1, and so the D action is strictly singular with respect to typical
measures. []

5.3 Extended ECPD Induced by Shift-Invariant Measures
Let 7, : {0,1,...,p— 1} = {0,1,...,p — 1}” be the projection maps
5n((il)l€Z) = Zn
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we say that a measure p on ({0, 1,...,p — 1}% Bsvmbelic) g bilaterally deterministic if

[gsymbolic _p <ﬂnezig(5ﬁoo)> \% (mneNU(jzo)>

As we discussed in the Introduction (in Subsection[1.3), Ornstein and Weiss introduced
this concept in [I1], and showed that any symbolic space endowed with a measure p
which is shift invariant and ergodic, is measure theoretically isomorphic to another
symbolic space which is bilaterally deterministic.

We now present the canonical example of an Extended ECPD Q®* induced by, and
measure theoretically isomorphic to, a shift-invariant ergodic measure on a symbolic
space (this example appears in [3] and [4]), and show that in this example, Q' is
bilaterally deterministic as an ECPD, iff p is bilaterally deterministic as a shift invari-
ant measure. As we discussed in the introduction, this implies that there are ‘many’
bilaterally deterministic ECPD, since the result obtained by Ornstein and Weiss im-
plies that every ECPS generated by a shift-invariant ergodic measure will be measure
theoretically isomorphic to an ECPS which is bilaterally deterministic. Additionally,
Theorem [1.16| implies that the bilateral determinism of a shift invariant ergodic mea-
sure p is the property that determines whether the Extended ECPS generated by this
measure will have the ‘pointwise conservativity’ property. In the language of symbolic
spaces, this is equivalent to saying that almost every conditional measure of u will be
conservative with respect to the action of finite coordinate changes, iff u is bilaterally
deterministic.

Let u be a shift-invariant ergodic measure on {0,1,...,p — 1}2. We assume addi-
tionally that p # 6;=, 5. For some point (i, )nez, let us denote the measure obtained
from conditioning on all coordinates smaller or equal to n by p("~). We call such mea-
sures prediction measures. Any prediction measure is concentrated on the set {(jix)rez
J" . =1i" .} and we can therefore think of it as a measure on {0,1,...,p — 1}, Our
assumption that p # ;= implies that E;_l is a null set with respect to almost every
prediction measure, and a measure on {0,1, ..., p— 1} which gives E;_l Zero measure
can be identified with a measure on [0,1) (via the map (in)nen = D ,cn P ). Using
this identification of prediction measures p(*“~) with measures fi("“~) on [0, 1), we can
define a map x : {0,1,...,p— 1}2 — (Py[0,1) x {0,1,...,p — 1})% by

~(in

X((in)nel) = (i 7w)7in)n€Z

Lemma 5.5. Q%" = yu is supported on LS, is an adapted distribution, and
(LS,B, o, xu) is measure theoretically isomorphic to ({0,1,...,p — 1}, B, o, pu) (in
particular Q"™ is a chain ECPD).

The proof of this Lemma appears in Appendix [B]
Our assumption that pu # d5,d;=1 implies that Q°' fulfills the Non-Constant
Sequence Condition, and therefore the distribution Q' = ®Q*" is an Extended
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ECPD, and the Extended ECPS (NM(R) x {0,1,...,p—1}*, B, M, Q") is mea-
sure theoretically isomorphic to (LS, B g, Q"%") and thus also to ({0,1,...,p —
1}2, Bsvmbolic o 11). Recall that Q' is bilaterally deterministic if for every kg € N,
and Q°* almost every (v, (4;)iez),

Pgext <51 = 01|07, (in)n<0, (%k)ka()) (v, (i)iez)) =1

which in our case occurs iff for every ky € N and Q"™ almost every (1, 1%;)iez,

Pgenain <%1 = i1|(fin, in)n<o0 (’zk)kzko> (e, 21)1ez) = 1

Using the shift invariance of Q"*", this can be shown to be equivalent to

Bchain :QCham (mnEZ_O—(([LZKﬂiﬁOO))) V (mnENO—(ESLO)>

which in turn is equivalent to bilateral determinism of y, i.e. to
Bsymbolic =H <mn€Zfo-(jzoo)> \4 (ﬂnENU(j;;O)>

5.4 Example of a ‘Strongly Singular’ ECPS

Fix p = 10. We now describe an ECPD P, , satisfying the singularity properties
described earlier (i.e. for Py, almost every p, the action of [0,1) on [0, 1) is strictly
singular with respect to p, and moreover, for every z € [0,1) \ {0}, tu(suppu) = 0).
For every n, denote words in {L, M, R}" by W = (Wy,...,W,), and for some A €
{L,M,R}, and W € {L, M, R}", W o A will be the word

(Wi,...,Wa, Ay, ... A) € {L, M, R}""!

A measure in our ECPS will be selected by a random recursive process, in which
the intervals which the measure will be supported on will be selected.

Stage 1: Select I, = [2)19, and Ig = [9)19. Iy will be the interval [5);p with
probability 1, and [6);9 with probability 3 (independently of all future choices).

Now assume that the intervals Iy have been defined for all W € {L, M, R}".

Stage n + 1: For every W € {L, M, R}", I,y is the intersection of the interval
I selected in the previous stage and the set {z : x,.1 = 2}, Iyog is the interval
Iy N {x : x,.1 = 9}, and Iyyop is, with equal probability, either Iy N {z : x,,1 = 5}
or Iy N{x: x4 =6}

We now define 1 to be the unique measure which for every n € N, and every
W e {L,M,R}", has pu(lw) = 37". Given pu, a point x € [0,1) will be selected
according to u, i.e. for every n, x will be with equal probability, in one of the intervals
{Iw Ywe(r.m,ryn-

We give a more formal definition of the ECPS described above, and prove that it
is a ECPS, in Appendix [Bl Our objective is to prove the following
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Proposition 5.6. For every u selected in the manner described above, and every x €
0,1)\ D, tXu(suppp) = 0.

Proposition 5.7. For almost every p, the action of D on [0,1) is strictly singular
with respect to p. Moreover, for every o € D\ {0}, tXu(suppu) = 0

Proof of Proposition[5.6. We will actually show that for every s € R\ Z [113],

tsp(suppp) = 0

and therefore using the same reasoning as in the first part of Remark for every
s €[0,1)\ D, t;pu(suppu) = 0.

Fix some pu and s € R\ D. We will show that for every s € (0, 1], tsu(suppu) = 0,
and the same reasoning can be used to show the same for s € [—1,0). It is unnecessary
to consider s ¢ [—1, 1] since in that case t,u[0,1) = 0.

Define K,, = K,(u) by K, = UWG{L’MJ-{}TLI_W. K, is a decreasing sequence of
compact sets, and K = NK,. is the support of pu.

Intervals I,.J € Djgn (the definition of D,» appears in the beginning of Subsec-
tion will be called overlapping if I = J, and we will say that I precedes J if
I+107"=J.

The s we fixed has a unique decimal representation s = » 2, s;,107". For j € N,
j < k < 0o we define [s]} = S _si1070

Let G,, = G,(11) be the set

{We{L,M,R}": 3Z € {L, M, R}" Iy + [s]] overlaps or precedes I}

Note that if I, J € Do and I + [s|} doesn’t overlap or precede J, then necessarily for
every n < k < oo,
I+[sfinJ=0

which implies that I + [s]¥ N J has in it at most one point, and therefore has measure
zero as p is non-atomic. We conclude that

p(KG N (K = 8)) < [GR[37"
and that if W & G, then for any A € {L, M, R}, Wo A ¢ G,1, and so
|Gn+1| < 3|Gn|

The fact that s ¢ D implies that there is an infinite number of [ € N such that
either ;41 € {0,9} or (Si41, s142) = (0,9), and therefore
9-107 > [sfig, > [s)1F 2 91070+ (54)

We pick a subsequence n; with the above property, and ng,1 —ng > 2.
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Fix an [ that fulfills Eq [5.4] and W € G;. There is a unique Z € G such that
Iy + [s]} overlaps or precedes I3.
Let us first assume Iy + [s]} overlaps I;. Then Iygrg + [s]} + 1070+2) is ‘to the

right of I’ and since [s]}T] > 107(+? necessarily

(Iwrr + [s]i?) N1z =0

On the other hand, Iyrr C Iy cannot intersect any other Iy for B € {L, M, R}
since Iy, does not overlap or precede Ig. Thus Iy rr + [s]ll+2 does not intersect any of
the I-th generation intervals {/p} pe(ra,gy and therefore it cannot intersect the [ + 2
generation intervals {Ip}peir m, gy+2, and so by definition WRR & Giys.

Now let us assume that Iy + [s]} precedes Iz. Then it can be shown similarly that
Iwrr + [s]'72 doesn’t intersect any Ip for B € {L, M, R} and so WLL ¢ G,5. Thus
in both cases we obtain

|Gria| < 8|Gi

Using this inequality recursively for the sequence ny, described above, we get |G, | <
3 (8)" |G, | which implies

U P = ) < o 0 (8 = 5) <3755 (5) 50

Thus we have shown that K = suppu satisfies u(K) =1 and t_su(K) = 0.
0

Proof of Proposition[5.7 We show that for P, almost every (u,z), there is a k € N
such that ¢%((p,xz)) = 1. This occurs iff g and 25™ determine z,, ie. if
p([w1, o, . o Tpy1) e > 0, but for every j # xq, pu([j, 2. .., Tpy1)pe+1r = 0. Therefore,
if ¢¥((p,2)) = 1 then necessarily also ¢¥™((11,2)) = 1, and so the fact that typical
(p, ) have ¢¥((u,x)) = 1 for some k, imply that ¢; = lim ¢¥ = 1 almost everywhere,
and thus this property is stronger that the strict singularity we want to prove, and
in fact (though we do not elaborate on this point) implies that for all a € D \ {0},
topu(suppp) = 0.
For any a = (ay,...,ar1) € {2,5,6,9}1 we estimate

Pr.i,, ({(12)  01(p,2) = 1H{a1"" = a})

For every n, and a € {2,5,6,9}", let r,(a) be the number of a; such that a; € {5,6}.
Note that

PPsmg ({M : ,u[a)pn > 0})) — 9-7nla)
For any a € {2,5,6,9}*+1 and i € {2, 5,6,9}, define

E* = {(,z): 2" =a and pli, as, ..., api1)1ge0r > 0}
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Then from the discussion above,

We note that Pp,, (B2 [{#]™" = a}) = 1, since for almost every (u, z), p[z1, . . ., Tpt1) 1001 >

0. Fori # ay,ifi,a; € {5,6}, then Pp, (EL{2}™ =a}) =Pp,,, (BN EL {211 =a}) =
0, and otherwise

Pp (Eﬂ{f]fﬂ = a}) =Pp,,, ({pe: pli,ag,. .., ak41)106+1 > 0}) = 27 Th1 (102 Bk 41)

sing
S 2—Tk+1(a)+l

and therefore, returning to Equation we obtain

Pp,., ({(11:7) : 81 (p, 1) = BT = a}) > 1 =3 27men (@t

For every k, let Ay, be the set Ay = {(1, ) : rpy1(2}') > £}, then by the law of
large numbers, Py, (Ay) — 1. Therefore,

Pp., ({(o): fma)=1})> Y Pp,, (¢f = 1{i}"! =a}) Pp,,, ({31 =a})

a: Tk+1(a)2%

> (1—3-270 ) Py (Ar) — 1

Appendices

A Proofs for Section [2

In this Section we give the proofs omitted in Section 2] We begin with Subsection
in which we present some facts which will be very useful for most of the proofs of
Section 2] We then present the proofs themselves in Subsection [A.2]

A.1 Preliminaries

Properties of N In Subsection [1.2| we defined for every v € M(R) \ {0}
Y(v) =min{n € N: v[—(n—1),n) > 0}

and then defined a normalization map on M(R) by

if v#£0

Ny = 1 TFwe-Dwe)
g {o if v =0

This map has the following properties
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Remark A.1. 1. For every p, there is a A(p) > 0 such that Ny = Au. Moreover,
if
] ey = 2] 11000
then A(p1) = AM(uz).

2. For every A > 0, N(Au) = Nu. If p: R — R is a measurable function then (for

A=Aw)
NpNp = NpAp = NApp = Npp

In the following we will discuss sequences of measures (i, ),~0, With the property
that there is an increasing sequence of intervals of the form I,, = [a,, b,) with a,, b, € Z
such that pu, is supported in I, (in fact we will discuss sequences with non-positive
indexes, i.e. (fin)n<o, (In)n<o €tc. but of course this makes no difference). The following
Lemma will be useful

Lemma A.2. In the setup described above,

1. If for every n, for every k > 0 there is a ny > 0 such that Uk/in‘[ = ln+k|, , then
for all large enough n, Nun|1 = N,unJFk}I :

2. If for all large enough n, for every k > 0, un|1
M) is constant for all large enough n. Additionally, for every A, im p,(A) is
well defined and defines a measure lim p,, with the property that

= unJrk}In, then the sequence

lim Np,, = N lim p,

3. If p 1s an invertible continuous function whose inverse is also continuous, then
lim pp, = plim p,, (this is in fact correct for every sequence i, which converges
in the weak topology).

Proof. 1. If for every n, p, = 0, then the claim is trivial. Otherwise, there is an
n € N such that fi,(1,) > 0, and therefore there is a minimal m = ¢(u) € N
with fi,[-m 4+ 1,m) > 0. There is now a large enough ny with the property that

[=m+1,m) N (Usoli) € Ing (A1)

which implies that for every n > ng, &k > 0, if nep, and p,.x agree on I,
then they will also agree on [—m + 1,m). It follows from Remark that

A(nkﬂn) = A(MnJrk) and
N(ptn) = N(Mifin) = Atk fon

and therefore

N(pa)|; = M pnir)in] ;= Mtner)tinsr|;, = (Npngn)|
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2. If for every n, p, = 0, then the claim is trivial. Otherwise, There is an ng € N
for which Equation holds, and for every n > ng, A(pn) = A(ptn,). We note
that also v = lim pu, agrees with p,, on I, and therefore also A\(v) = A(uy, ), and
SO

Hm N, = Bm A(png ) i = A(ping ) v = Nv

3. Assume p,, — p (in the weak topology). Let f be a continuous function supported
on a compact set K. Then f o p is a continuous function, supported in p~ 'K
which is a compact set since we assume p~! is a continuous function, and therefore

[ fdppn = [(f o p)dpn — [(fop)du= [ fdpu.
O

Properties of H We recall that we denoted the set of orientation preserving homo-
theties by H, and the intervals of the form [a,b) by Z, and defined pj to be the unique
orientation preserving homothety which takes the interval I € Z to the interval J € 7.

For any m € Z U {oo}, we said that (I,,),<m, is compatible with (i, ),<y, if for every
n <m, I, = I'"" . We record the following properties of H:

1. For I, J,K € Z, pX p/ = p¥ | since these are both homotheties in H which take I
to K, and therefore uniqueness implies that they are equal.

2. for p € H, I € T and i € {0,1,...,p — 1}, p(I') = (p(I))". It follows that
p{ = pi:, and that for m € ZU {co}, if (I,)n<m is compatible with (i, )n<m, then
so is (ply)n<m-

A.2 Proofs

We now present the proofs of the Lemmas from Section 2] As we mentioned before,
the proofs will often use the observations presented in the previous Subsection, and we
will not necessarily give a reference each time one of these observations is used.

Recall that we defined for every (fin,in)nez € LS measures fi,, obtained by taking
the sequence of intervals (1,,)n,<o which is well ordered and compatible with (i,),<o,
and defining fi,, = N pﬁg T

Lemma 2.4. For every k <n <0, there is a A = A(k) > 0 such that
fincal,, = M,
Moreover there is an ng such that for all k < ng, AM(k) = 1.

Proof. 1t is sufficient to prove the Lemma for £ = n, and the case where k < n follows
immediately from the fact 4that I, C I.
Note that since p, = ;" ;, i, and pﬁ-’n fn—1 agree on Iy = [0,1) up to a multiplica-
0

tive constant, and therefore if we pushforward both measures by pﬁg, they will agree
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on [, up to a multiplicative constant. Note that pk [y, 18, up to normalization, equal

to fi,, and since

In IO _ In _ I’ZL”*l _ Infl
P1oPrin = Prin = Ppin = Pl

it follows that pﬁ; pﬁ?n fhp—1 = px‘l ln—1, Which is equal to fi,,_1 up to normalization.
0
Thus we proved that fi,_; and f, agree on I, up to a multiplicative constant.
Finally, the fact that for negative enough n, A(n) = 1, follows immediately from
Lemma [A2
O

The last Lemma enabled us to define a measure v = v((fin,in)n<o) by V(A) =
lim,,, oo fin(A) and ® : LS — NM(R) x {0,1,...,p — 1} by

((pin; in)nez) = (V((1n; in)n<o), (in)nez)
We then claimed
Lemma 2.6. o = M"®
Recall that we defined M on NM(R) x {0,1,...,p — 1}* by

ngt(% (i”)”GZ) = (Npil v, G(@”)WEZ))

where in our terminology here, if (I,,),<; is the sequence of intervals well based and
compatible with (i,),<1, then p;, = pﬁ

Proof. For every (pin,in)nez € LS,

® 0 o ((ttns in)nez) = P((Hn+1,ins1)nez) = (V((Hnt1, in+1)n§0>a (in+1)nez)

while
M;Xt © CI)((:u'm in)nGZ) - M;Xt(y((,una in)nEZ)a (Zn)nGZ)

= (Nphy((/lm in)nSO)a (in-&-l)neZ))

therefore, we need to prove that

V((Mnt15Tn41)n<0) = Npi V((Hns in)n<o)

Let (I,)n<1 be the sequence of intervals which is well based and compatible with
(in)n<1. It follows that (I,11)n<o is still compatible with (i,41)n<0. As homotheties
preserve compatibility, (J,)n<o = (pﬁ’]nﬂ)ngo is also compatible with (i,41)n<0, and
it is also well based since pﬁ) I, = I. Therefore,

V((Hnt1, int1)n<o) = nl_lf_noo Nﬂfﬁﬂnﬂ (A.2)
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Now, as Jy = [0,1) = Iy, and the homothety in H which takes I, to J, = pfi[nﬂ is
just pﬁ’ by definition,

Iniq Ini1

pJo_pIo_p1n+1plo phpfo
and so, returning to Eq [A.2) we obtain

n+1

V((#n415ins1)nco) = lim NPIIPJO fni1 = lim NP?;NP o g

= hm Npﬁ)ﬂn-&-l:N lim p§(1)/:bn+1

- Np[? hm MTL+1 ijl ((/Jlna in)ngo)

Lemma 2.7. The restriction of ® to the (o-invariant) set
{(knsin)nez € LS ¢ (in)nez & EoU Ep_1}
is a measurable bijection onto (the Mg™ invariant set)
{(w, (in)nez) = (in)nez & Eo U Epi}

Proof. Using the tools provided in Subsection in the same manner as we did above,
it can be shown that

(v, (in)nez) = (NP (v]} )sin)nez
where (I,,)n<o is the sequence which is well based and compatible with (i,,),<o. O
We recall that for k € Z, we defined T, : X — X by
T (v, (in)n<o) = (Ntxv, sk((in)n<0))

where s (i) is the unique sequence with the property that, for (1,,),<o and (J;,)n<o, the
sequences of intervals which are well based and compatible with (i,,),<0 and sg((in)n<o)
respectively, for all negative enough n, J, = I,, — k.

Lemma 2.8. The maps {T}}rez define an action of Z on X.

Proof. We need to prove that for all [,k € Z, Nt;Nt;, = Nt;y; and s;s; = s;1,. Since
for all k,1 € Z, tx,t, € H, it follows that for every v € NM(R),

Nthth = Ntltkl/ = Ntl+kV

If (1)n<0, (Jn)n<o and (F,)n<o are well based and compatible with (i, )n<0, Sk((in)n<o)
and s;(sk((in)n<o0)) respectively, then for all negative enough n, J, = I, — k and
F, = J, — I and therefore for all negative enough n, F,, = I, — (I + k). Therefore,
uniqueness implies that

S1+k((4n)n<0) = s1(sk((in)n<0))
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We now recall that we defined a group
G = {(in)n<o : i, = 0 for all negative enough n}

and we defined ‘translation maps’ {S,}acc on X by Su((tn, in)n<0) = (Vn, jn) Where
(Jn)n<o = (in)n<o + a and v, is the unique sequence with u, = v, for all negative
enough n, and additionally (v, jn)n<o € X.

Lemma 2.9. For every (pin, in)n<o € X, the following holds

1. For every k € Z, there is an a € G such that
0Sa((kny in)n<0) = TkO((fins in)n<o) (2.4)

2. For every a € G, there is a k € 7Z such that Equation 2.4 holds.
3. Assume that for a € G, k € Z, Equation holds. Then a =0 iff k = 0.

Proof. 1. For given k € Z and (fn, in)n<0; 8S (in)n<o and sx((in)n<o) disagree on
a finite number of coordinates, there is some a € G such that si((in)n<o) =
(in)n<o + a. We claim that for this a, equality holds in the measure coordinate
as well, i.e.

0Sa((fns in)n<0) = Tl ((Hny in)n<o) = (Ntx((fn, in)n<o), Sk ((in)n<o))

Let (I,)n<o and (J,)n<o be the sequences of intervals which are well based and
compatible with (i, )n<o and $g((in)n<o0) = (in)n<o + @, then

Ntgv((ptns in)n<o) = Ni( lim Nojy pn) = im NteNpf pn

trln

= lim Ntypppn = lim Nppi" p, = v(So((u, i)i<o))

where (x) follows from the fact that for all negative enough n, J, = t;I, and
finSa((tt1, i1)i<0) = fin -

2. For given a € G and (fin,in)n<o € X, it is sufficient to find a & € Z such
that sg((in)n<o) = (in)n<o + @ and therefore by the proof of the former claim,
there is a b € G such that 0.S,((ten, in)n<o) = TkO((tin, in)n<o) and in particular
(in)n<o + @ = (in)n<o + b and therefore a = b.

To find such a k € Z, let (1;);<o be the sequence well based and compatible with
(i1)1<0, and define
(Ji)i<o = (i)i<o +a

There is some n < 0 such that for all m < n , 4, = j,,. Define a sequence
(Jn)n<o, by requiring that for all m < n, J,, = I,,, and by recursively requiring
that for all m > n,

Jm — jnL

m—1
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Then (J;);<o is compatible with (j;);<o but not well based. However, there is a
k € Z such that tyJy = Iy, and as homotheties preserve compatibility, (tx.J;)i<o is
well based and compatible with (j;);<o. Since for all negative enough [, t5J; = ti 1,
(J1)i<o fulfills the property that determines s ((4;)i<o) uniquely, and therefore

sk((i1)i<0) = (Ji)i<o = (i)i<o + @

3. This just follows from the fact that (i;)i<o + a = (4)i<o iff @ = 0, and similarly

sk((i)i<o) = (i1)i<o iff k= 0.
]

The following can now be easily shown

Lemma 2.10. The action of G on X s conservative with respect to a probability
distribution QQ on X, iff the action of Z on X s conservative with respect to Q).

Proof. Assume that the action of Z on X is conservative with respect to Q. Let A C X
be a Borel set, with Q(A) > 0, we want to prove that Q(A N (Uasea\f035.4)) > 0.

Q(A N (UaGG\{O}SaA)) = QQ(QA N (Uaeg\{o}GSaA)) = 9@(9A N (Ukez\{g}TkGA)) >0

Where 0A N (Ugez\ (03 Tk0A) has positive measure since we assumed the action of Z on
X is conservative with respect to (). The other direction can be prove in exactly the
same way. O

Lemma 2.11. If the action of Z on X is conservative with respect to Q, then the
action of Z on NM(R) is conservative with respect to myQ.

Proof. If A C NM(R) is a Borel set with 7;Q(A) > 0, then
QU (v, (in)n<o) € X : v € AY) = 7uQ(A) > 0

and therefore the conservativity in the assumption implies that there is some k # 0
such that

0< @({(V, (in)n<o) € X:ve A} NT{ (v, (in)n<o) € X:ve A}) =
QAN tA)
]

B Formal Description of the ECPS from Subsec-
tion (5.3l and Subsection (5.4

We begin this Appendix by proving that the Chain ECPD which arises from a shift
invariant ergodic measure on a symbolic space, as described in Subsection [5.3], is indeed
a Chain ECPD. We then give a more formal description of the ECPD described in
Subsection and prove that it is indeed an ECPD.
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Lemma 5.5. Q""" = vy is supported on LS, is an adapted distribution, and
(LS, B,0,xu) is measure theoretically isomorphic to ({0,1,...,p — 1}2.B, o, 1) (in
particular Q"™ is a chain ECPD).

Proof. Before we give the proof, let us denote the map (ix)ren — Y jen ikp~* by
7. Note that Q™™ almost every p gives {0,1,...,p — 1} \ Ef | full measure, and
therefore we think of 7 as defined on this set only. The advantage of this is that =
is now a bijection. For every n € Z let us denote by f,, the maps which identify
{(r)rez : "o = 1"} with {0,1,...,p—1}. We can now give a formal definition for
the identification of prediction measures with measures on [0, 1), by () = 7 f, (o).

The main part of the proof is to show that Q<" is supported on LS, or in other

words, to show that (f(ee))in+1 = (u(ir—zg)). It is sufficient to show that for every r € N
and a € {0,1,...,p — 1}", the measures are equal on the set {x : Z] = a}, since the
collection of finite disjoint unions of such sets are an algebra that generates the Borel
o-algebra.

Note that for every u € Py[0,1) and i € {0,1,...,p — 1},

p ({z: 2] =a}) =P, (257 = a|2; = i) (B.1)
Additionally, note that since 7 is not defined on E;_l,

m ({z 3] = a}) = {(in)ren s 7 = a}
and therefore

faln (e dy = a}) = {(kez 100 = "ees Jndi = a} (B.2)
Thus, using Eq. and Eq. [B.2] we obtain
() (G 5 = ) =5 BB o (357 = alin = 1)
=ra PMO‘EM) <§Zi§+l = ‘1’5200 = iﬁwinﬂ = ’in+1)
=P, <§TTLL~—|":§+1 = a|jﬁoo = Z'Tiooﬂjn—l-l = in+1>
=P BA R ({o 2 3 = a})

Thus we have shown that Q"*" is supported on LS. It is now immediate to check that
x is a bijective factor map. Finally, Q<" is adapted since for every j € {0,1,...,p—1}
and Q"™ almost every (i, in)nez,

Pgerain (i1 = 31t in)uzo) (s innez) = B (31 = 31Ginnso) ((in)acz)

= 1) (G nez : 1 = 5}) = A1) = 10l4),
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We now show a more formal way to define the ECPS from Subsection [5.4]as a factor
of a product of symbolic spaces, and show that it is indeed an ECPS.
Consider the countable set

{La Ma R}* = {(D} U (UneN{L7 Ma R}n)
For (z,y) € {5, 6 {EMEY x [L M, R} and W = (Wy, Wy, ..., W,) € {L, M, R}?

we define the cylinder sets Iy () = [a1, . .., aq) 194, Where
ai(x, Wli_l) = CEWIifl W, =M

Thus the intervals Iy, are chosen with the same distribution as in Subsection [5.4, We
now take ji, to be the unique measure that, for every W € {L, M, R}?, has u(ly) =
37% Finally, we pick z(z,y) € [0,1) by requiring that for every n, z will be in the
interval Iy (z), where W = {y;,...,y,}. Thus z will be in the interval Iy (z) with
probability 37", which is exactly the probability that u, gives that interval. 7 is now
defined via

m(@,y) = (e, 2(2,9))
For all x € {5,6}{4ME" and A € {L, M, R}, define 2 by setting 2{}, = x40 for
every W € {L, M, R}*.
We now define a (continuous) map S : {5, 6 HEMEY [ M, R}Y — {5, 6}EAMEY «
{L, M, R} by
S(z,y) = (=", 0(y))
and a measure A on {5, 6 HEMEY L1, M R}N which is just the product of the uniform
measures on the symbolic spaces {5, 6}{&ME and {L, M, R}N.

Lemma B.1. 1. 7S =M "r.
2. Pyng = ™ 1s adapted, and invariant and ergodic with respect to My,.
Proof. 1. We need to prove that for A almost every (z,y),
(o, 2(2%, 0y)) = 7S (2, y) = Mig m(x,y) = (3 @Y, Mgz (, y))
It follows from the definition of a, (z, W]") that
an (a1, W) = @ (o, W)
Which implies that for every n € N,
ol ) = a2, (9)7) = G (5,57H) = 2uia (2, )) = (Mro2(z, )

Additionally, s and p2™* give mass 3™ precisely to 3" n-th generation in-
tervals of the form (W € {L, M, R}")

Ly (") = [a} (2", W))on = [az ™ (2,91 0 W))10n

and therefore they are equal as measures.
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2. We will first prove the adaptivity of P4, and then prove that A is invariant
and ergodic with respect to .S and therefore Pi;,, is invariant and ergodic with
respect to M73,.

Adaptiveness As we explained previously, for every j € {0,1,...,9},

A

A is invariant We can rewrite S as

S(z,y) = (Syz, 09)

Where S,z = 2¥*. As there is only a finite number of .S, it is not difficult to show
that the function
(x,y) — Syx

is measurable. Additionally, oAy = Ay and for every y, it can be verified that
SyA1 = A1, and therefore (X xY,B; x By, S, A) is a skew system, and S is measure
preserving (see page 11 in [I0] for the definition of skew product we use here).

A is mixing We give an outline of the proof. Let A be the collection of cylinder
sets in By multiplied by X, and C be the collection of cylinder sets in B; multiplied
by Y. It is sufficient to show that for every A;, Ay € A and By, By € C, for large
enough n € N, A; N By and S™" (A3 N By) are independent, since this implies
that the same is true for disjoint unions of such intersections, which is an algebra
which generates B; x By, and therefore (X x Y,B; x By, S, \) is mixing.

Pick A, Ay € A and By, By € C, it can be shown that

(a) For large enough n, S™" A, is independent of A; N B;.

(b) There is an ng, such that for every n > ng, and every A € A, S™" B, and
AN By are independent.

Since for every n € Nand A € A, ST A € A, it follows that for n > ny,
)\((Al N Bl> N an(A2 N Bg)) - )\(((Al N anA2> N Bl) N anB2>

- )\(Al N SinAQ N Bl))\(sint)

which for large enough n is equal to
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